[−][src]Struct tokio::net::UnixDatagram
An I/O object representing a Unix datagram socket.
A socket can be either named (associated with a filesystem path) or unnamed.
This type does not provide a split
method, because this functionality
can be achieved by wrapping the socket in an Arc
. Note that you do
not need a Mutex
to share the UnixDatagram
— an Arc<UnixDatagram>
is enough. This is because all of the methods take &self
instead of
&mut self
.
Note: named sockets are persisted even after the object is dropped and the program has exited, and cannot be reconnected. It is advised that you either check for and unlink the existing socket if it exists, or use a temporary file that is guaranteed to not already exist.
Examples
Using named sockets, associated with a filesystem path:
use tokio::net::UnixDatagram; use tempfile::tempdir; // We use a temporary directory so that the socket // files left by the bound sockets will get cleaned up. let tmp = tempdir()?; // Bind each socket to a filesystem path let tx_path = tmp.path().join("tx"); let tx = UnixDatagram::bind(&tx_path)?; let rx_path = tmp.path().join("rx"); let rx = UnixDatagram::bind(&rx_path)?; let bytes = b"hello world"; tx.send_to(bytes, &rx_path).await?; let mut buf = vec![0u8; 24]; let (size, addr) = rx.recv_from(&mut buf).await?; let dgram = &buf[..size]; assert_eq!(dgram, bytes); assert_eq!(addr.as_pathname().unwrap(), &tx_path);
Using unnamed sockets, created as a pair
use tokio::net::UnixDatagram; // Create the pair of sockets let (sock1, sock2) = UnixDatagram::pair()?; // Since the sockets are paired, the paired send/recv // functions can be used let bytes = b"hello world"; sock1.send(bytes).await?; let mut buff = vec![0u8; 24]; let size = sock2.recv(&mut buff).await?; let dgram = &buff[..size]; assert_eq!(dgram, bytes);
Implementations
impl UnixDatagram
[src]
pub async fn ready(&self, interest: Interest) -> Result<Ready>
[src]
Wait for any of the requested ready states.
This function is usually paired with try_recv()
or try_send()
. It
can be used to concurrently recv / send to the same socket on a single
task without splitting the socket.
The function may complete without the socket being ready. This is a
false-positive and attempting an operation will return with
io::ErrorKind::WouldBlock
.
Examples
Concurrently receive from and send to the socket on the same task without splitting.
use tokio::io::Interest; use tokio::net::UnixDatagram; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let dir = tempfile::tempdir().unwrap(); let client_path = dir.path().join("client.sock"); let server_path = dir.path().join("server.sock"); let socket = UnixDatagram::bind(&client_path)?; socket.connect(&server_path)?; loop { let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?; if ready.is_readable() { let mut data = [0; 1024]; match socket.try_recv(&mut data[..]) { Ok(n) => { println!("received {:?}", &data[..n]); } // False-positive, continue Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} Err(e) => { return Err(e); } } } if ready.is_writable() { // Write some data match socket.try_send(b"hello world") { Ok(n) => { println!("sent {} bytes", n); } // False-positive, continue Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} Err(e) => { return Err(e); } } } } }
pub async fn writable(&self) -> Result<()>
[src]
Wait for the socket to become writable.
This function is equivalent to ready(Interest::WRITABLE)
and is
usually paired with try_send()
or try_send_to()
.
The function may complete without the socket being writable. This is a
false-positive and attempting a try_send()
will return with
io::ErrorKind::WouldBlock
.
Examples
use tokio::net::UnixDatagram; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let dir = tempfile::tempdir().unwrap(); let client_path = dir.path().join("client.sock"); let server_path = dir.path().join("server.sock"); let socket = UnixDatagram::bind(&client_path)?; socket.connect(&server_path)?; loop { // Wait for the socket to be writable socket.writable().await?; // Try to send data, this may still fail with `WouldBlock` // if the readiness event is a false positive. match socket.try_send(b"hello world") { Ok(n) => { break; } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { continue; } Err(e) => { return Err(e); } } } Ok(()) }
pub async fn readable(&self) -> Result<()>
[src]
Wait for the socket to become readable.
This function is equivalent to ready(Interest::READABLE)
and is usually
paired with try_recv()
.
The function may complete without the socket being readable. This is a
false-positive and attempting a try_recv()
will return with
io::ErrorKind::WouldBlock
.
Examples
use tokio::net::UnixDatagram; use std::io; #[tokio::main] async fn main() -> io::Result<()> { // Connect to a peer let dir = tempfile::tempdir().unwrap(); let client_path = dir.path().join("client.sock"); let server_path = dir.path().join("server.sock"); let socket = UnixDatagram::bind(&client_path)?; socket.connect(&server_path)?; loop { // Wait for the socket to be readable socket.readable().await?; // The buffer is **not** included in the async task and will // only exist on the stack. let mut buf = [0; 1024]; // Try to recv data, this may still fail with `WouldBlock` // if the readiness event is a false positive. match socket.try_recv(&mut buf) { Ok(n) => { println!("GOT {:?}", &buf[..n]); break; } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { continue; } Err(e) => { return Err(e); } } } Ok(()) }
pub fn bind<P>(path: P) -> Result<UnixDatagram> where
P: AsRef<Path>,
[src]
P: AsRef<Path>,
Creates a new UnixDatagram
bound to the specified path.
Examples
use tokio::net::UnixDatagram; use tempfile::tempdir; // We use a temporary directory so that the socket // files left by the bound sockets will get cleaned up. let tmp = tempdir()?; // Bind the socket to a filesystem path let socket_path = tmp.path().join("socket"); let socket = UnixDatagram::bind(&socket_path)?;
pub fn pair() -> Result<(UnixDatagram, UnixDatagram)>
[src]
Creates an unnamed pair of connected sockets.
This function will create a pair of interconnected Unix sockets for communicating back and forth between one another.
Examples
use tokio::net::UnixDatagram; // Create the pair of sockets let (sock1, sock2) = UnixDatagram::pair()?; // Since the sockets are paired, the paired send/recv // functions can be used let bytes = b"hail eris"; sock1.send(bytes).await?; let mut buff = vec![0u8; 24]; let size = sock2.recv(&mut buff).await?; let dgram = &buff[..size]; assert_eq!(dgram, bytes);
pub fn from_std(datagram: UnixDatagram) -> Result<UnixDatagram>
[src]
Creates new UnixDatagram
from a std::os::unix::net::UnixDatagram
.
This function is intended to be used to wrap a UnixDatagram from the standard library in the Tokio equivalent. The conversion assumes nothing about the underlying datagram; it is left up to the user to set it in non-blocking mode.
Panics
This function panics if thread-local runtime is not set.
The runtime is usually set implicitly when this function is called
from a future driven by a Tokio runtime, otherwise runtime can be set
explicitly with Runtime::enter
function.
Examples
use tokio::net::UnixDatagram; use std::os::unix::net::UnixDatagram as StdUDS; use tempfile::tempdir; // We use a temporary directory so that the socket // files left by the bound sockets will get cleaned up. let tmp = tempdir()?; // Bind the socket to a filesystem path let socket_path = tmp.path().join("socket"); let std_socket = StdUDS::bind(&socket_path)?; std_socket.set_nonblocking(true)?; let tokio_socket = UnixDatagram::from_std(std_socket)?;
pub fn into_std(self) -> Result<UnixDatagram>
[src]
Turn a tokio::net::UnixDatagram
into a std::os::unix::net::UnixDatagram
.
The returned std::os::unix::net::UnixDatagram
will have nonblocking
mode set as true
. Use set_nonblocking
to change the blocking mode
if needed.
Examples
use std::error::Error; #[tokio::main] async fn main() -> Result<(), Box<dyn Error>> { let tokio_socket = tokio::net::UnixDatagram::bind("127.0.0.1:0")?; let std_socket = tokio_socket.into_std()?; std_socket.set_nonblocking(false)?; Ok(()) }
pub fn unbound() -> Result<UnixDatagram>
[src]
Creates a new UnixDatagram
which is not bound to any address.
Examples
use tokio::net::UnixDatagram; use tempfile::tempdir; // Create an unbound socket let tx = UnixDatagram::unbound()?; // Create another, bound socket let tmp = tempdir()?; let rx_path = tmp.path().join("rx"); let rx = UnixDatagram::bind(&rx_path)?; // Send to the bound socket let bytes = b"hello world"; tx.send_to(bytes, &rx_path).await?; let mut buf = vec![0u8; 24]; let (size, addr) = rx.recv_from(&mut buf).await?; let dgram = &buf[..size]; assert_eq!(dgram, bytes);
pub fn connect<P: AsRef<Path>>(&self, path: P) -> Result<()>
[src]
Connects the socket to the specified address.
The send
method may be used to send data to the specified address.
recv
and recv_from
will only receive data from that address.
Examples
use tokio::net::UnixDatagram; use tempfile::tempdir; // Create an unbound socket let tx = UnixDatagram::unbound()?; // Create another, bound socket let tmp = tempdir()?; let rx_path = tmp.path().join("rx"); let rx = UnixDatagram::bind(&rx_path)?; // Connect to the bound socket tx.connect(&rx_path)?; // Send to the bound socket let bytes = b"hello world"; tx.send(bytes).await?; let mut buf = vec![0u8; 24]; let (size, addr) = rx.recv_from(&mut buf).await?; let dgram = &buf[..size]; assert_eq!(dgram, bytes);
pub async fn send(&self, buf: &[u8]) -> Result<usize>
[src]
Sends data on the socket to the socket's peer.
Examples
use tokio::net::UnixDatagram; // Create the pair of sockets let (sock1, sock2) = UnixDatagram::pair()?; // Since the sockets are paired, the paired send/recv // functions can be used let bytes = b"hello world"; sock1.send(bytes).await?; let mut buff = vec![0u8; 24]; let size = sock2.recv(&mut buff).await?; let dgram = &buff[..size]; assert_eq!(dgram, bytes);
pub fn try_send(&self, buf: &[u8]) -> Result<usize>
[src]
Try to send a datagram to the peer without waiting.
Examples
use tokio::net::UnixDatagram; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let dir = tempfile::tempdir().unwrap(); let client_path = dir.path().join("client.sock"); let server_path = dir.path().join("server.sock"); let socket = UnixDatagram::bind(&client_path)?; socket.connect(&server_path)?; loop { // Wait for the socket to be writable socket.writable().await?; // Try to send data, this may still fail with `WouldBlock` // if the readiness event is a false positive. match socket.try_send(b"hello world") { Ok(n) => { break; } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { continue; } Err(e) => { return Err(e); } } } Ok(()) }
pub fn try_send_to<P>(&self, buf: &[u8], target: P) -> Result<usize> where
P: AsRef<Path>,
[src]
P: AsRef<Path>,
Try to send a datagram to the peer without waiting.
Examples
use tokio::net::UnixDatagram; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let dir = tempfile::tempdir().unwrap(); let client_path = dir.path().join("client.sock"); let server_path = dir.path().join("server.sock"); let socket = UnixDatagram::bind(&client_path)?; loop { // Wait for the socket to be writable socket.writable().await?; // Try to send data, this may still fail with `WouldBlock` // if the readiness event is a false positive. match socket.try_send_to(b"hello world", &server_path) { Ok(n) => { break; } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { continue; } Err(e) => { return Err(e); } } } Ok(()) }
pub async fn recv(&self, buf: &mut [u8]) -> Result<usize>
[src]
Receives data from the socket.
Examples
use tokio::net::UnixDatagram; // Create the pair of sockets let (sock1, sock2) = UnixDatagram::pair()?; // Since the sockets are paired, the paired send/recv // functions can be used let bytes = b"hello world"; sock1.send(bytes).await?; let mut buff = vec![0u8; 24]; let size = sock2.recv(&mut buff).await?; let dgram = &buff[..size]; assert_eq!(dgram, bytes);
pub fn try_recv(&self, buf: &mut [u8]) -> Result<usize>
[src]
Try to receive a datagram from the peer without waiting.
Examples
use tokio::net::UnixDatagram; use std::io; #[tokio::main] async fn main() -> io::Result<()> { // Connect to a peer let dir = tempfile::tempdir().unwrap(); let client_path = dir.path().join("client.sock"); let server_path = dir.path().join("server.sock"); let socket = UnixDatagram::bind(&client_path)?; socket.connect(&server_path)?; loop { // Wait for the socket to be readable socket.readable().await?; // The buffer is **not** included in the async task and will // only exist on the stack. let mut buf = [0; 1024]; // Try to recv data, this may still fail with `WouldBlock` // if the readiness event is a false positive. match socket.try_recv(&mut buf) { Ok(n) => { println!("GOT {:?}", &buf[..n]); break; } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { continue; } Err(e) => { return Err(e); } } } Ok(()) }
pub async fn send_to<P>(&self, buf: &[u8], target: P) -> Result<usize> where
P: AsRef<Path>,
[src]
P: AsRef<Path>,
Sends data on the socket to the specified address.
Examples
use tokio::net::UnixDatagram; use tempfile::tempdir; // We use a temporary directory so that the socket // files left by the bound sockets will get cleaned up. let tmp = tempdir()?; // Bind each socket to a filesystem path let tx_path = tmp.path().join("tx"); let tx = UnixDatagram::bind(&tx_path)?; let rx_path = tmp.path().join("rx"); let rx = UnixDatagram::bind(&rx_path)?; let bytes = b"hello world"; tx.send_to(bytes, &rx_path).await?; let mut buf = vec![0u8; 24]; let (size, addr) = rx.recv_from(&mut buf).await?; let dgram = &buf[..size]; assert_eq!(dgram, bytes); assert_eq!(addr.as_pathname().unwrap(), &tx_path);
pub async fn recv_from(&self, buf: &mut [u8]) -> Result<(usize, SocketAddr)>
[src]
Receives data from the socket.
Examples
use tokio::net::UnixDatagram; use tempfile::tempdir; // We use a temporary directory so that the socket // files left by the bound sockets will get cleaned up. let tmp = tempdir()?; // Bind each socket to a filesystem path let tx_path = tmp.path().join("tx"); let tx = UnixDatagram::bind(&tx_path)?; let rx_path = tmp.path().join("rx"); let rx = UnixDatagram::bind(&rx_path)?; let bytes = b"hello world"; tx.send_to(bytes, &rx_path).await?; let mut buf = vec![0u8; 24]; let (size, addr) = rx.recv_from(&mut buf).await?; let dgram = &buf[..size]; assert_eq!(dgram, bytes); assert_eq!(addr.as_pathname().unwrap(), &tx_path);
pub fn poll_recv_from(
&self,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>
) -> Poll<Result<SocketAddr>>
[src]
&self,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>
) -> Poll<Result<SocketAddr>>
Attempts to receive a single datagram on the specified address.
Note that on multiple calls to a poll_*
method in the recv direction, only the
Waker
from the Context
passed to the most recent call will be scheduled to
receive a wakeup.
Return value
The function returns:
Poll::Pending
if the socket is not ready to readPoll::Ready(Ok(addr))
reads data fromaddr
intoReadBuf
if the socket is readyPoll::Ready(Err(e))
if an error is encountered.
Errors
This function may encounter any standard I/O error except WouldBlock
.
pub fn poll_send_to<P>(
&self,
cx: &mut Context<'_>,
buf: &[u8],
target: P
) -> Poll<Result<usize>> where
P: AsRef<Path>,
[src]
&self,
cx: &mut Context<'_>,
buf: &[u8],
target: P
) -> Poll<Result<usize>> where
P: AsRef<Path>,
Attempts to send data to the specified address.
Note that on multiple calls to a poll_*
method in the send direction, only the
Waker
from the Context
passed to the most recent call will be scheduled to
receive a wakeup.
Return value
The function returns:
Poll::Pending
if the socket is not ready to writePoll::Ready(Ok(n))
n
is the number of bytes sent.Poll::Ready(Err(e))
if an error is encountered.
Errors
This function may encounter any standard I/O error except WouldBlock
.
pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>>
[src]
Attempts to send data on the socket to the remote address to which it
was previously connect
ed.
The connect
method will connect this socket to a remote address.
This method will fail if the socket is not connected.
Note that on multiple calls to a poll_*
method in the send direction,
only the Waker
from the Context
passed to the most recent call will
be scheduled to receive a wakeup.
Return value
The function returns:
Poll::Pending
if the socket is not available to writePoll::Ready(Ok(n))
n
is the number of bytes sentPoll::Ready(Err(e))
if an error is encountered.
Errors
This function may encounter any standard I/O error except WouldBlock
.
pub fn poll_recv(
&self,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>
) -> Poll<Result<()>>
[src]
&self,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>
) -> Poll<Result<()>>
Attempts to receive a single datagram message on the socket from the remote
address to which it is connect
ed.
The connect
method will connect this socket to a remote address. This method
resolves to an error if the socket is not connected.
Note that on multiple calls to a poll_*
method in the recv direction, only the
Waker
from the Context
passed to the most recent call will be scheduled to
receive a wakeup.
Return value
The function returns:
Poll::Pending
if the socket is not ready to readPoll::Ready(Ok(()))
reads dataReadBuf
if the socket is readyPoll::Ready(Err(e))
if an error is encountered.
Errors
This function may encounter any standard I/O error except WouldBlock
.
pub fn try_recv_from(&self, buf: &mut [u8]) -> Result<(usize, SocketAddr)>
[src]
Try to receive data from the socket without waiting.
Examples
use tokio::net::UnixDatagram; use std::io; #[tokio::main] async fn main() -> io::Result<()> { // Connect to a peer let dir = tempfile::tempdir().unwrap(); let client_path = dir.path().join("client.sock"); let server_path = dir.path().join("server.sock"); let socket = UnixDatagram::bind(&client_path)?; loop { // Wait for the socket to be readable socket.readable().await?; // The buffer is **not** included in the async task and will // only exist on the stack. let mut buf = [0; 1024]; // Try to recv data, this may still fail with `WouldBlock` // if the readiness event is a false positive. match socket.try_recv_from(&mut buf) { Ok((n, _addr)) => { println!("GOT {:?}", &buf[..n]); break; } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { continue; } Err(e) => { return Err(e); } } } Ok(()) }
pub fn local_addr(&self) -> Result<SocketAddr>
[src]
Returns the local address that this socket is bound to.
Examples
For a socket bound to a local path
use tokio::net::UnixDatagram; use tempfile::tempdir; // We use a temporary directory so that the socket // files left by the bound sockets will get cleaned up. let tmp = tempdir()?; // Bind socket to a filesystem path let socket_path = tmp.path().join("socket"); let socket = UnixDatagram::bind(&socket_path)?; assert_eq!(socket.local_addr()?.as_pathname().unwrap(), &socket_path);
For an unbound socket
use tokio::net::UnixDatagram; // Create an unbound socket let socket = UnixDatagram::unbound()?; assert!(socket.local_addr()?.is_unnamed());
pub fn peer_addr(&self) -> Result<SocketAddr>
[src]
Returns the address of this socket's peer.
The connect
method will connect the socket to a peer.
Examples
For a peer with a local path
use tokio::net::UnixDatagram; use tempfile::tempdir; // Create an unbound socket let tx = UnixDatagram::unbound()?; // Create another, bound socket let tmp = tempdir()?; let rx_path = tmp.path().join("rx"); let rx = UnixDatagram::bind(&rx_path)?; // Connect to the bound socket tx.connect(&rx_path)?; assert_eq!(tx.peer_addr()?.as_pathname().unwrap(), &rx_path);
For an unbound peer
use tokio::net::UnixDatagram; // Create the pair of sockets let (sock1, sock2) = UnixDatagram::pair()?; assert!(sock1.peer_addr()?.is_unnamed());
pub fn take_error(&self) -> Result<Option<Error>>
[src]
Returns the value of the SO_ERROR
option.
Examples
use tokio::net::UnixDatagram; // Create an unbound socket let socket = UnixDatagram::unbound()?; if let Ok(Some(err)) = socket.take_error() { println!("Got error: {:?}", err); }
pub fn shutdown(&self, how: Shutdown) -> Result<()>
[src]
Shuts down the read, write, or both halves of this connection.
This function will cause all pending and future I/O calls on the
specified portions to immediately return with an appropriate value
(see the documentation of Shutdown
).
Examples
use tokio::net::UnixDatagram; use std::net::Shutdown; // Create an unbound socket let (socket, other) = UnixDatagram::pair()?; socket.shutdown(Shutdown::Both)?; // NOTE: the following commented out code does NOT work as expected. // Due to an underlying issue, the recv call will block indefinitely. // See: https://github.com/tokio-rs/tokio/issues/1679 //let mut buff = vec![0u8; 24]; //let size = socket.recv(&mut buff).await?; //assert_eq!(size, 0); let send_result = socket.send(b"hello world").await; assert!(send_result.is_err());
Trait Implementations
impl AsRawFd for UnixDatagram
[src]
impl Debug for UnixDatagram
[src]
impl TryFrom<UnixDatagram> for UnixDatagram
[src]
type Error = Error
The type returned in the event of a conversion error.
fn try_from(stream: UnixDatagram) -> Result<Self, Self::Error>
[src]
Consumes stream, returning the Tokio I/O object.
This is equivalent to
UnixDatagram::from_std(stream)
.
Auto Trait Implementations
impl !RefUnwindSafe for UnixDatagram
[src]
impl Send for UnixDatagram
[src]
impl Sync for UnixDatagram
[src]
impl Unpin for UnixDatagram
[src]
impl !UnwindSafe for UnixDatagram
[src]
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut Tⓘ
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,