1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
#![allow( clippy::cognitive_complexity, clippy::large_enum_variant, clippy::needless_doctest_main )] #![warn( missing_debug_implementations, missing_docs, rust_2018_idioms, unreachable_pub )] #![cfg_attr(docsrs, deny(broken_intra_doc_links))] #![doc(test( no_crate_inject, attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables)) ))] #![cfg_attr(docsrs, feature(doc_cfg))] //! A runtime for writing reliable network applications without compromising speed. //! //! Tokio is an event-driven, non-blocking I/O platform for writing asynchronous //! applications with the Rust programming language. At a high level, it //! provides a few major components: //! //! * Tools for [working with asynchronous tasks][tasks], including //! [synchronization primitives and channels][sync] and [timeouts, sleeps, and //! intervals][time]. //! * APIs for [performing asynchronous I/O][io], including [TCP and UDP][net] sockets, //! [filesystem][fs] operations, and [process] and [signal] management. //! * A [runtime] for executing asynchronous code, including a task scheduler, //! an I/O driver backed by the operating system's event queue (epoll, kqueue, //! IOCP, etc...), and a high performance timer. //! //! Guide level documentation is found on the [website]. //! //! [tasks]: #working-with-tasks //! [sync]: crate::sync //! [time]: crate::time //! [io]: #asynchronous-io //! [net]: crate::net //! [fs]: crate::fs //! [process]: crate::process //! [signal]: crate::signal //! [fs]: crate::fs //! [runtime]: crate::runtime //! [website]: https://tokio.rs/tokio/tutorial //! //! # A Tour of Tokio //! //! Tokio consists of a number of modules that provide a range of functionality //! essential for implementing asynchronous applications in Rust. In this //! section, we will take a brief tour of Tokio, summarizing the major APIs and //! their uses. //! //! The easiest way to get started is to enable all features. Do this by //! enabling the `full` feature flag: //! //! ```toml //! tokio = { version = "1", features = ["full"] } //! ``` //! //! ### Authoring applications //! //! Tokio is great for writing applications and most users in this case shouldn't //! worry too much about what features they should pick. If you're unsure, we suggest //! going with `full` to ensure that you don't run into any road blocks while you're //! building your application. //! //! #### Example //! //! This example shows the quickest way to get started with Tokio. //! //! ```toml //! tokio = { version = "1", features = ["full"] } //! ``` //! //! ### Authoring libraries //! //! As a library author your goal should be to provide the lighest weight crate //! that is based on Tokio. To achieve this you should ensure that you only enable //! the features you need. This allows users to pick up your crate without having //! to enable unnecessary features. //! //! #### Example //! //! This example shows how you may want to import features for a library that just //! needs to `tokio::spawn` and use a `TcpStream`. //! //! ```toml //! tokio = { version = "1", features = ["rt", "net"] } //! ``` //! //! ## Working With Tasks //! //! Asynchronous programs in Rust are based around lightweight, non-blocking //! units of execution called [_tasks_][tasks]. The [`tokio::task`] module provides //! important tools for working with tasks: //! //! * The [`spawn`] function and [`JoinHandle`] type, for scheduling a new task //! on the Tokio runtime and awaiting the output of a spawned task, respectively, //! * Functions for [running blocking operations][blocking] in an asynchronous //! task context. //! //! The [`tokio::task`] module is present only when the "rt" feature flag //! is enabled. //! //! [tasks]: task/index.html#what-are-tasks //! [`tokio::task`]: crate::task //! [`spawn`]: crate::task::spawn() //! [`JoinHandle`]: crate::task::JoinHandle //! [blocking]: task/index.html#blocking-and-yielding //! //! The [`tokio::sync`] module contains synchronization primitives to use when //! needing to communicate or share data. These include: //! //! * channels ([`oneshot`], [`mpsc`], and [`watch`]), for sending values //! between tasks, //! * a non-blocking [`Mutex`], for controlling access to a shared, mutable //! value, //! * an asynchronous [`Barrier`] type, for multiple tasks to synchronize before //! beginning a computation. //! //! The `tokio::sync` module is present only when the "sync" feature flag is //! enabled. //! //! [`tokio::sync`]: crate::sync //! [`Mutex`]: crate::sync::Mutex //! [`Barrier`]: crate::sync::Barrier //! [`oneshot`]: crate::sync::oneshot //! [`mpsc`]: crate::sync::mpsc //! [`watch`]: crate::sync::watch //! //! The [`tokio::time`] module provides utilities for tracking time and //! scheduling work. This includes functions for setting [timeouts][timeout] for //! tasks, [sleeping][sleep] work to run in the future, or [repeating an operation at an //! interval][interval]. //! //! In order to use `tokio::time`, the "time" feature flag must be enabled. //! //! [`tokio::time`]: crate::time //! [sleep]: crate::time::sleep() //! [interval]: crate::time::interval() //! [timeout]: crate::time::timeout() //! //! Finally, Tokio provides a _runtime_ for executing asynchronous tasks. Most //! applications can use the [`#[tokio::main]`][main] macro to run their code on the //! Tokio runtime. However, this macro provides only basic configuration options. As //! an alternative, the [`tokio::runtime`] module provides more powerful APIs for configuring //! and managing runtimes. You should use that module if the `#[tokio::main]` macro doesn't //! provide the functionality you need. //! //! Using the runtime requires the "rt" or "rt-multi-thread" feature flags, to //! enable the basic [single-threaded scheduler][rt] and the [thread-pool //! scheduler][rt-multi-thread], respectively. See the [`runtime` module //! documentation][rt-features] for details. In addition, the "macros" feature //! flag enables the `#[tokio::main]` and `#[tokio::test]` attributes. //! //! [main]: attr.main.html //! [`tokio::runtime`]: crate::runtime //! [`Builder`]: crate::runtime::Builder //! [`Runtime`]: crate::runtime::Runtime //! [rt]: runtime/index.html#basic-scheduler //! [rt-multi-thread]: runtime/index.html#threaded-scheduler //! [rt-features]: runtime/index.html#runtime-scheduler //! //! ## CPU-bound tasks and blocking code //! //! Tokio is able to concurrently run many tasks on a few threads by repeatedly //! swapping the currently running task on each thread. However, this kind of //! swapping can only happen at `.await` points, so code that spends a long time //! without reaching an `.await` will prevent other tasks from running. To //! combat this, Tokio provides two kinds of threads: Core threads and blocking //! threads. The core threads are where all asynchronous code runs, and Tokio //! will by default spawn one for each CPU core. The blocking threads are //! spawned on demand, can be used to run blocking code that would otherwise //! block other tasks from running and are kept alive when not used for a certain //! amount of time which can be configured with [`thread_keep_alive`]. //! Since it is not possible for Tokio to swap out blocking tasks, like it //! can do with asynchronous code, the upper limit on the number of blocking //! threads is very large. These limits can be configured on the [`Builder`]. //! //! To spawn a blocking task, you should use the [`spawn_blocking`] function. //! //! [`Builder`]: crate::runtime::Builder //! [`spawn_blocking`]: crate::task::spawn_blocking() //! [`thread_keep_alive`]: crate::runtime::Builder::thread_keep_alive() //! //! ``` //! #[tokio::main] //! async fn main() { //! // This is running on a core thread. //! //! let blocking_task = tokio::task::spawn_blocking(|| { //! // This is running on a blocking thread. //! // Blocking here is ok. //! }); //! //! // We can wait for the blocking task like this: //! // If the blocking task panics, the unwrap below will propagate the //! // panic. //! blocking_task.await.unwrap(); //! } //! ``` //! //! If your code is CPU-bound and you wish to limit the number of threads used //! to run it, you should run it on another thread pool such as [rayon]. You //! can use an [`oneshot`] channel to send the result back to Tokio when the //! rayon task finishes. //! //! [rayon]: https://docs.rs/rayon //! [`oneshot`]: crate::sync::oneshot //! //! ## Asynchronous IO //! //! As well as scheduling and running tasks, Tokio provides everything you need //! to perform input and output asynchronously. //! //! The [`tokio::io`] module provides Tokio's asynchronous core I/O primitives, //! the [`AsyncRead`], [`AsyncWrite`], and [`AsyncBufRead`] traits. In addition, //! when the "io-util" feature flag is enabled, it also provides combinators and //! functions for working with these traits, forming as an asynchronous //! counterpart to [`std::io`]. //! //! Tokio also includes APIs for performing various kinds of I/O and interacting //! with the operating system asynchronously. These include: //! //! * [`tokio::net`], which contains non-blocking versions of [TCP], [UDP], and //! [Unix Domain Sockets][UDS] (enabled by the "net" feature flag), //! * [`tokio::fs`], similar to [`std::fs`] but for performing filesystem I/O //! asynchronously (enabled by the "fs" feature flag), //! * [`tokio::signal`], for asynchronously handling Unix and Windows OS signals //! (enabled by the "signal" feature flag), //! * [`tokio::process`], for spawning and managing child processes (enabled by //! the "process" feature flag). //! //! [`tokio::io`]: crate::io //! [`AsyncRead`]: crate::io::AsyncRead //! [`AsyncWrite`]: crate::io::AsyncWrite //! [`AsyncBufRead`]: crate::io::AsyncBufRead //! [`std::io`]: std::io //! [`tokio::net`]: crate::net //! [TCP]: crate::net::tcp //! [UDP]: crate::net::UdpSocket //! [UDS]: crate::net::unix //! [`tokio::fs`]: crate::fs //! [`std::fs`]: std::fs //! [`tokio::signal`]: crate::signal //! [`tokio::process`]: crate::process //! //! # Examples //! //! A simple TCP echo server: //! //! ```no_run //! use tokio::net::TcpListener; //! use tokio::io::{AsyncReadExt, AsyncWriteExt}; //! //! #[tokio::main] //! async fn main() -> Result<(), Box<dyn std::error::Error>> { //! let listener = TcpListener::bind("127.0.0.1:8080").await?; //! //! loop { //! let (mut socket, _) = listener.accept().await?; //! //! tokio::spawn(async move { //! let mut buf = [0; 1024]; //! //! // In a loop, read data from the socket and write the data back. //! loop { //! let n = match socket.read(&mut buf).await { //! // socket closed //! Ok(n) if n == 0 => return, //! Ok(n) => n, //! Err(e) => { //! eprintln!("failed to read from socket; err = {:?}", e); //! return; //! } //! }; //! //! // Write the data back //! if let Err(e) = socket.write_all(&buf[0..n]).await { //! eprintln!("failed to write to socket; err = {:?}", e); //! return; //! } //! } //! }); //! } //! } //! ``` //! //! ## Feature flags //! //! Tokio uses a set of [feature flags] to reduce the amount of compiled code. It //! is possible to just enable certain features over others. By default, Tokio //! does not enable any features but allows one to enable a subset for their use //! case. Below is a list of the available feature flags. You may also notice //! above each function, struct and trait there is listed one or more feature flags //! that are required for that item to be used. If you are new to Tokio it is //! recommended that you use the `full` feature flag which will enable all public APIs. //! Beware though that this will pull in many extra dependencies that you may not //! need. //! //! - `full`: Enables all Tokio public API features listed below except `test-util`. //! - `rt`: Enables `tokio::spawn`, the basic (current thread) scheduler, //! and non-scheduler utilities. //! - `rt-multi-thread`: Enables the heavier, multi-threaded, work-stealing scheduler. //! - `io-util`: Enables the IO based `Ext` traits. //! - `io-std`: Enable `Stdout`, `Stdin` and `Stderr` types. //! - `net`: Enables `tokio::net` types such as `TcpStream`, `UnixStream` and `UdpSocket`, //! as well as (on Unix-like systems) `AsyncFd` //! - `time`: Enables `tokio::time` types and allows the schedulers to enable //! the built in timer. //! - `process`: Enables `tokio::process` types. //! - `macros`: Enables `#[tokio::main]` and `#[tokio::test]` macros. //! - `sync`: Enables all `tokio::sync` types. //! - `signal`: Enables all `tokio::signal` types. //! - `fs`: Enables `tokio::fs` types. //! - `test-util`: Enables testing based infrastructure for the Tokio runtime. //! //! _Note: `AsyncRead` and `AsyncWrite` traits do not require any features and are //! always available._ //! //! ### Internal features //! //! These features do not expose any new API, but influence internal //! implementation aspects of Tokio, and can pull in additional //! dependencies. //! //! - `parking_lot`: As a potential optimization, use the _parking_lot_ crate's //! synchronization primitives internally. MSRV may increase according to the //! _parking_lot_ release in use. //! //! ### Unstable features //! //! These feature flags enable **unstable** features. The public API may break in 1.x //! releases. To enable these features, the `--cfg tokio_unstable` must be passed to //! `rustc` when compiling. This is easiest done using the `RUSTFLAGS` env variable: //! `RUSTFLAGS="--cfg tokio_unstable"`. //! //! - `tracing`: Enables tracing events. //! //! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section // Includes re-exports used by macros. // // This module is not intended to be part of the public API. In general, any // `doc(hidden)` code is not part of Tokio's public and stable API. #[macro_use] #[doc(hidden)] pub mod macros; cfg_fs! { pub mod fs; } mod future; pub mod io; pub mod net; mod loom; mod park; cfg_process! { pub mod process; } #[cfg(any(feature = "net", feature = "fs", feature = "io-std"))] mod blocking; cfg_rt! { pub mod runtime; } pub(crate) mod coop; cfg_signal! { pub mod signal; } cfg_signal_internal! { #[cfg(not(feature = "signal"))] #[allow(dead_code)] #[allow(unreachable_pub)] pub(crate) mod signal; } cfg_sync! { pub mod sync; } cfg_not_sync! { mod sync; } pub mod task; cfg_rt! { pub use task::spawn; } cfg_time! { pub mod time; } mod util; /// Due to the `Stream` trait's inclusion in `std` landing later than Tokio's 1.0 /// release, most of the Tokio stream utilities have been moved into the [`tokio-stream`] /// crate. /// /// # Why was `Stream` not included in Tokio 1.0? /// /// Originally, we had planned to ship Tokio 1.0 with a stable `Stream` type /// but unfortunetly the [RFC] had not been merged in time for `Stream` to /// reach `std` on a stable compiler in time for the 1.0 release of Tokio. For /// this reason, the team has decided to move all `Stream` based utilities to /// the [`tokio-stream`] crate. While this is not ideal, once `Stream` has made /// it into the standard library and the MSRV period has passed, we will implement /// stream for our different types. /// /// While this may seem unfortunate, not all is lost as you can get much of the /// `Stream` support with `async/await` and `while let` loops. It is also possible /// to create a `impl Stream` from `async fn` using the [`async-stream`] crate. /// /// [`tokio-stream`]: https://docs.rs/tokio-stream /// [`async-stream`]: https://docs.rs/async-stream /// [RFC]: https://github.com/rust-lang/rfcs/pull/2996 /// /// # Example /// /// Convert a [`sync::mpsc::Receiver`] to an `impl Stream`. /// /// ```rust,no_run /// use tokio::sync::mpsc; /// /// let (tx, mut rx) = mpsc::channel::<usize>(16); /// /// let stream = async_stream::stream! { /// while let Some(item) = rx.recv().await { /// yield item; /// } /// }; /// ``` pub mod stream {} cfg_macros! { /// Implementation detail of the `select!` macro. This macro is **not** /// intended to be used as part of the public API and is permitted to /// change. #[doc(hidden)] pub use tokio_macros::select_priv_declare_output_enum; cfg_rt! { #[cfg(feature = "rt-multi-thread")] #[cfg(not(test))] // Work around for rust-lang/rust#62127 #[cfg_attr(docsrs, doc(cfg(feature = "macros")))] pub use tokio_macros::main; #[cfg(feature = "rt-multi-thread")] #[cfg_attr(docsrs, doc(cfg(feature = "macros")))] pub use tokio_macros::test; cfg_not_rt_multi_thread! { #[cfg(not(test))] // Work around for rust-lang/rust#62127 pub use tokio_macros::main_rt as main; pub use tokio_macros::test_rt as test; } } // Always fail if rt is not enabled. cfg_not_rt! { #[cfg(not(test))] pub use tokio_macros::main_fail as main; pub use tokio_macros::test_fail as test; } } // TODO: rm #[cfg(feature = "io-util")] #[cfg(test)] fn is_unpin<T: Unpin>() {}