[−][src]Trait num_traits::float::FloatCore
Generic trait for floating point numbers that works with no_std
.
This trait implements a subset of the Float
trait.
Required methods
fn infinity() -> Self
[src]
Returns positive infinity.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T) { assert!(T::infinity() == x); } check(f32::INFINITY); check(f64::INFINITY);
fn neg_infinity() -> Self
[src]
Returns negative infinity.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T) { assert!(T::neg_infinity() == x); } check(f32::NEG_INFINITY); check(f64::NEG_INFINITY);
fn nan() -> Self
[src]
Returns NaN.
Examples
use num_traits::float::FloatCore; fn check<T: FloatCore>() { let n = T::nan(); assert!(n != n); } check::<f32>(); check::<f64>();
fn neg_zero() -> Self
[src]
Returns -0.0
.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(n: T) { let z = T::neg_zero(); assert!(z.is_zero()); assert!(T::one() / z == n); } check(f32::NEG_INFINITY); check(f64::NEG_INFINITY);
fn min_value() -> Self
[src]
Returns the smallest finite value that this type can represent.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T) { assert!(T::min_value() == x); } check(f32::MIN); check(f64::MIN);
fn min_positive_value() -> Self
[src]
Returns the smallest positive, normalized value that this type can represent.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T) { assert!(T::min_positive_value() == x); } check(f32::MIN_POSITIVE); check(f64::MIN_POSITIVE);
fn epsilon() -> Self
[src]
Returns epsilon, a small positive value.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T) { assert!(T::epsilon() == x); } check(f32::EPSILON); check(f64::EPSILON);
fn max_value() -> Self
[src]
Returns the largest finite value that this type can represent.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T) { assert!(T::max_value() == x); } check(f32::MAX); check(f64::MAX);
fn classify(self) -> FpCategory
[src]
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; use std::num::FpCategory; fn check<T: FloatCore>(x: T, c: FpCategory) { assert!(x.classify() == c); } check(f32::INFINITY, FpCategory::Infinite); check(f32::MAX, FpCategory::Normal); check(f64::NAN, FpCategory::Nan); check(f64::MIN_POSITIVE, FpCategory::Normal); check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal); check(0.0f64, FpCategory::Zero);
fn to_degrees(self) -> Self
[src]
Converts to degrees, assuming the number is in radians.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(rad: T, deg: T) { assert!(rad.to_degrees() == deg); } check(0.0f32, 0.0); check(f32::consts::PI, 180.0); check(f64::consts::FRAC_PI_4, 45.0); check(f64::INFINITY, f64::INFINITY);
fn to_radians(self) -> Self
[src]
Converts to radians, assuming the number is in degrees.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(deg: T, rad: T) { assert!(deg.to_radians() == rad); } check(0.0f32, 0.0); check(180.0, f32::consts::PI); check(45.0, f64::consts::FRAC_PI_4); check(f64::INFINITY, f64::INFINITY);
fn integer_decode(self) -> (u64, i16, i8)
[src]
Returns the mantissa, base 2 exponent, and sign as integers, respectively.
The original number can be recovered by sign * mantissa * 2 ^ exponent
.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) { let (mantissa, exponent, sign) = x.integer_decode(); assert_eq!(mantissa, m); assert_eq!(exponent, e); assert_eq!(sign, s); } check(2.0f32, 1 << 23, -22, 1); check(-2.0f32, 1 << 23, -22, -1); check(f32::INFINITY, 1 << 23, 105, 1); check(f64::NEG_INFINITY, 1 << 52, 972, -1);
Provided methods
fn is_nan(self) -> bool
[src]
Returns true
if the number is NaN.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, p: bool) { assert!(x.is_nan() == p); } check(f32::NAN, true); check(f32::INFINITY, false); check(f64::NAN, true); check(0.0f64, false);
fn is_infinite(self) -> bool
[src]
Returns true
if the number is infinite.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, p: bool) { assert!(x.is_infinite() == p); } check(f32::INFINITY, true); check(f32::NEG_INFINITY, true); check(f32::NAN, false); check(f64::INFINITY, true); check(f64::NEG_INFINITY, true); check(0.0f64, false);
fn is_finite(self) -> bool
[src]
Returns true
if the number is neither infinite or NaN.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, p: bool) { assert!(x.is_finite() == p); } check(f32::INFINITY, false); check(f32::MAX, true); check(f64::NEG_INFINITY, false); check(f64::MIN_POSITIVE, true); check(f64::NAN, false);
fn is_normal(self) -> bool
[src]
Returns true
if the number is neither zero, infinite, subnormal or NaN.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, p: bool) { assert!(x.is_normal() == p); } check(f32::INFINITY, false); check(f32::MAX, true); check(f64::NEG_INFINITY, false); check(f64::MIN_POSITIVE, true); check(0.0f64, false);
fn floor(self) -> Self
[src]
Returns the largest integer less than or equal to a number.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T) { assert!(x.floor() == y); } check(f32::INFINITY, f32::INFINITY); check(0.9f32, 0.0); check(1.0f32, 1.0); check(1.1f32, 1.0); check(-0.0f64, 0.0); check(-0.9f64, -1.0); check(-1.0f64, -1.0); check(-1.1f64, -2.0); check(f64::MIN, f64::MIN);
fn ceil(self) -> Self
[src]
Returns the smallest integer greater than or equal to a number.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T) { assert!(x.ceil() == y); } check(f32::INFINITY, f32::INFINITY); check(0.9f32, 1.0); check(1.0f32, 1.0); check(1.1f32, 2.0); check(-0.0f64, 0.0); check(-0.9f64, -0.0); check(-1.0f64, -1.0); check(-1.1f64, -1.0); check(f64::MIN, f64::MIN);
fn round(self) -> Self
[src]
Returns the nearest integer to a number. Round half-way cases away from 0.0
.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T) { assert!(x.round() == y); } check(f32::INFINITY, f32::INFINITY); check(0.4f32, 0.0); check(0.5f32, 1.0); check(0.6f32, 1.0); check(-0.4f64, 0.0); check(-0.5f64, -1.0); check(-0.6f64, -1.0); check(f64::MIN, f64::MIN);
fn trunc(self) -> Self
[src]
Return the integer part of a number.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T) { assert!(x.trunc() == y); } check(f32::INFINITY, f32::INFINITY); check(0.9f32, 0.0); check(1.0f32, 1.0); check(1.1f32, 1.0); check(-0.0f64, 0.0); check(-0.9f64, -0.0); check(-1.0f64, -1.0); check(-1.1f64, -1.0); check(f64::MIN, f64::MIN);
fn fract(self) -> Self
[src]
Returns the fractional part of a number.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T) { assert!(x.fract() == y); } check(f32::MAX, 0.0); check(0.75f32, 0.75); check(1.0f32, 0.0); check(1.25f32, 0.25); check(-0.0f64, 0.0); check(-0.75f64, -0.75); check(-1.0f64, 0.0); check(-1.25f64, -0.25); check(f64::MIN, 0.0);
fn abs(self) -> Self
[src]
Computes the absolute value of self
. Returns FloatCore::nan()
if the
number is FloatCore::nan()
.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T) { assert!(x.abs() == y); } check(f32::INFINITY, f32::INFINITY); check(1.0f32, 1.0); check(0.0f64, 0.0); check(-0.0f64, 0.0); check(-1.0f64, 1.0); check(f64::MIN, f64::MAX);
fn signum(self) -> Self
[src]
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orFloatCore::infinity()
-1.0
if the number is negative,-0.0
orFloatCore::neg_infinity()
FloatCore::nan()
if the number isFloatCore::nan()
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T) { assert!(x.signum() == y); } check(f32::INFINITY, 1.0); check(3.0f32, 1.0); check(0.0f32, 1.0); check(-0.0f64, -1.0); check(-3.0f64, -1.0); check(f64::MIN, -1.0);
fn is_sign_positive(self) -> bool
[src]
Returns true
if self
is positive, including +0.0
and
FloatCore::infinity()
, and since Rust 1.20 also
FloatCore::nan()
.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, p: bool) { assert!(x.is_sign_positive() == p); } check(f32::INFINITY, true); check(f32::MAX, true); check(0.0f32, true); check(-0.0f64, false); check(f64::NEG_INFINITY, false); check(f64::MIN_POSITIVE, true); check(-f64::NAN, false);
fn is_sign_negative(self) -> bool
[src]
Returns true
if self
is negative, including -0.0
and
FloatCore::neg_infinity()
, and since Rust 1.20 also
-FloatCore::nan()
.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, p: bool) { assert!(x.is_sign_negative() == p); } check(f32::INFINITY, false); check(f32::MAX, false); check(0.0f32, false); check(-0.0f64, true); check(f64::NEG_INFINITY, true); check(f64::MIN_POSITIVE, false); check(f64::NAN, false);
fn min(self, other: Self) -> Self
[src]
Returns the minimum of the two numbers.
If one of the arguments is NaN, then the other argument is returned.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T, min: T) { assert!(x.min(y) == min); } check(1.0f32, 2.0, 1.0); check(f32::NAN, 2.0, 2.0); check(1.0f64, -2.0, -2.0); check(1.0f64, f64::NAN, 1.0);
fn max(self, other: Self) -> Self
[src]
Returns the maximum of the two numbers.
If one of the arguments is NaN, then the other argument is returned.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T, max: T) { assert!(x.max(y) == max); } check(1.0f32, 2.0, 2.0); check(1.0f32, f32::NAN, 1.0); check(-1.0f64, 2.0, 2.0); check(-1.0f64, f64::NAN, -1.0);
fn recip(self) -> Self
[src]
Returns the reciprocal (multiplicative inverse) of the number.
Examples
use num_traits::float::FloatCore; use std::{f32, f64}; fn check<T: FloatCore>(x: T, y: T) { assert!(x.recip() == y); assert!(y.recip() == x); } check(f32::INFINITY, 0.0); check(2.0f32, 0.5); check(-0.25f64, -4.0); check(-0.0f64, f64::NEG_INFINITY);
fn powi(self, exp: i32) -> Self
[src]
Raise a number to an integer power.
Using this function is generally faster than using powf
Examples
use num_traits::float::FloatCore; fn check<T: FloatCore>(x: T, exp: i32, powi: T) { assert!(x.powi(exp) == powi); } check(9.0f32, 2, 81.0); check(1.0f32, -2, 1.0); check(10.0f64, 20, 1e20); check(4.0f64, -2, 0.0625); check(-1.0f64, std::i32::MIN, 1.0);