1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
//! Runs `!Send` futures on the current thread. use crate::runtime::task::{self, JoinHandle, Task}; use crate::sync::AtomicWaker; use crate::util::linked_list::{Link, LinkedList}; use std::cell::{Cell, RefCell}; use std::collections::VecDeque; use std::fmt; use std::future::Future; use std::marker::PhantomData; use std::pin::Pin; use std::sync::{Arc, Mutex}; use std::task::Poll; use pin_project_lite::pin_project; cfg_rt! { /// A set of tasks which are executed on the same thread. /// /// In some cases, it is necessary to run one or more futures that do not /// implement [`Send`] and thus are unsafe to send between threads. In these /// cases, a [local task set] may be used to schedule one or more `!Send` /// futures to run together on the same thread. /// /// For example, the following code will not compile: /// /// ```rust,compile_fail /// use std::rc::Rc; /// /// #[tokio::main] /// async fn main() { /// // `Rc` does not implement `Send`, and thus may not be sent between /// // threads safely. /// let unsend_data = Rc::new("my unsend data..."); /// /// let unsend_data = unsend_data.clone(); /// // Because the `async` block here moves `unsend_data`, the future is `!Send`. /// // Since `tokio::spawn` requires the spawned future to implement `Send`, this /// // will not compile. /// tokio::spawn(async move { /// println!("{}", unsend_data); /// // ... /// }).await.unwrap(); /// } /// ``` /// /// # Use with `run_until` /// /// To spawn `!Send` futures, we can use a local task set to schedule them /// on the thread calling [`Runtime::block_on`]. When running inside of the /// local task set, we can use [`task::spawn_local`], which can spawn /// `!Send` futures. For example: /// /// ```rust /// use std::rc::Rc; /// use tokio::task; /// /// #[tokio::main] /// async fn main() { /// let unsend_data = Rc::new("my unsend data..."); /// /// // Construct a local task set that can run `!Send` futures. /// let local = task::LocalSet::new(); /// /// // Run the local task set. /// local.run_until(async move { /// let unsend_data = unsend_data.clone(); /// // `spawn_local` ensures that the future is spawned on the local /// // task set. /// task::spawn_local(async move { /// println!("{}", unsend_data); /// // ... /// }).await.unwrap(); /// }).await; /// } /// ``` /// **Note:** The `run_until` method can only be used in `#[tokio::main]`, /// `#[tokio::test]` or directly inside a call to [`Runtime::block_on`]. It /// cannot be used inside a task spawned with `tokio::spawn`. /// /// ## Awaiting a `LocalSet` /// /// Additionally, a `LocalSet` itself implements `Future`, completing when /// *all* tasks spawned on the `LocalSet` complete. This can be used to run /// several futures on a `LocalSet` and drive the whole set until they /// complete. For example, /// /// ```rust /// use tokio::{task, time}; /// use std::rc::Rc; /// /// #[tokio::main] /// async fn main() { /// let unsend_data = Rc::new("world"); /// let local = task::LocalSet::new(); /// /// let unsend_data2 = unsend_data.clone(); /// local.spawn_local(async move { /// // ... /// println!("hello {}", unsend_data2) /// }); /// /// local.spawn_local(async move { /// time::sleep(time::Duration::from_millis(100)).await; /// println!("goodbye {}", unsend_data) /// }); /// /// // ... /// /// local.await; /// } /// ``` /// **Note:** Awaiting a `LocalSet` can only be done inside /// `#[tokio::main]`, `#[tokio::test]` or directly inside a call to /// [`Runtime::block_on`]. It cannot be used inside a task spawned with /// `tokio::spawn`. /// /// ## Use inside `tokio::spawn` /// /// The two methods mentioned above cannot be used inside `tokio::spawn`, so /// to spawn `!Send` futures from inside `tokio::spawn`, we need to do /// something else. The solution is to create the `LocalSet` somewhere else, /// and communicate with it using an [`mpsc`] channel. /// /// The following example puts the `LocalSet` inside a new thread. /// ``` /// use tokio::runtime::Builder; /// use tokio::sync::{mpsc, oneshot}; /// use tokio::task::LocalSet; /// /// // This struct describes the task you want to spawn. Here we include /// // some simple examples. The oneshot channel allows sending a response /// // to the spawner. /// #[derive(Debug)] /// enum Task { /// PrintNumber(u32), /// AddOne(u32, oneshot::Sender<u32>), /// } /// /// #[derive(Clone)] /// struct LocalSpawner { /// send: mpsc::UnboundedSender<Task>, /// } /// /// impl LocalSpawner { /// pub fn new() -> Self { /// let (send, mut recv) = mpsc::unbounded_channel(); /// /// let rt = Builder::new_current_thread() /// .enable_all() /// .build() /// .unwrap(); /// /// std::thread::spawn(move || { /// let local = LocalSet::new(); /// /// local.spawn_local(async move { /// while let Some(new_task) = recv.recv().await { /// tokio::task::spawn_local(run_task(new_task)); /// } /// // If the while loop returns, then all the LocalSpawner /// // objects have have been dropped. /// }); /// /// // This will return once all senders are dropped and all /// // spawned tasks have returned. /// rt.block_on(local); /// }); /// /// Self { /// send, /// } /// } /// /// pub fn spawn(&self, task: Task) { /// self.send.send(task).expect("Thread with LocalSet has shut down."); /// } /// } /// /// // This task may do !Send stuff. We use printing a number as an example, /// // but it could be anything. /// // /// // The Task struct is an enum to support spawning many different kinds /// // of operations. /// async fn run_task(task: Task) { /// match task { /// Task::PrintNumber(n) => { /// println!("{}", n); /// }, /// Task::AddOne(n, response) => { /// // We ignore failures to send the response. /// let _ = response.send(n + 1); /// }, /// } /// } /// /// #[tokio::main] /// async fn main() { /// let spawner = LocalSpawner::new(); /// /// let (send, response) = oneshot::channel(); /// spawner.spawn(Task::AddOne(10, send)); /// let eleven = response.await.unwrap(); /// assert_eq!(eleven, 11); /// } /// ``` /// /// [`Send`]: trait@std::marker::Send /// [local task set]: struct@LocalSet /// [`Runtime::block_on`]: method@crate::runtime::Runtime::block_on /// [`task::spawn_local`]: fn@spawn_local /// [`mpsc`]: mod@crate::sync::mpsc pub struct LocalSet { /// Current scheduler tick tick: Cell<u8>, /// State available from thread-local context: Context, /// This type should not be Send. _not_send: PhantomData<*const ()>, } } /// State available from the thread-local struct Context { /// Owned task set and local run queue tasks: RefCell<Tasks>, /// State shared between threads. shared: Arc<Shared>, } struct Tasks { /// Collection of all active tasks spawned onto this executor. owned: LinkedList<Task<Arc<Shared>>, <Task<Arc<Shared>> as Link>::Target>, /// Local run queue sender and receiver. queue: VecDeque<task::Notified<Arc<Shared>>>, } /// LocalSet state shared between threads. struct Shared { /// Remote run queue sender queue: Mutex<VecDeque<task::Notified<Arc<Shared>>>>, /// Wake the `LocalSet` task waker: AtomicWaker, } pin_project! { #[derive(Debug)] struct RunUntil<'a, F> { local_set: &'a LocalSet, #[pin] future: F, } } scoped_thread_local!(static CURRENT: Context); cfg_rt! { /// Spawns a `!Send` future on the local task set. /// /// The spawned future will be run on the same thread that called `spawn_local.` /// This may only be called from the context of a local task set. /// /// # Panics /// /// - This function panics if called outside of a local task set. /// /// # Examples /// /// ```rust /// use std::rc::Rc; /// use tokio::task; /// /// #[tokio::main] /// async fn main() { /// let unsend_data = Rc::new("my unsend data..."); /// /// let local = task::LocalSet::new(); /// /// // Run the local task set. /// local.run_until(async move { /// let unsend_data = unsend_data.clone(); /// task::spawn_local(async move { /// println!("{}", unsend_data); /// // ... /// }).await.unwrap(); /// }).await; /// } /// ``` #[cfg_attr(tokio_track_caller, track_caller)] pub fn spawn_local<F>(future: F) -> JoinHandle<F::Output> where F: Future + 'static, F::Output: 'static, { let future = crate::util::trace::task(future, "local"); CURRENT.with(|maybe_cx| { let cx = maybe_cx .expect("`spawn_local` called from outside of a `task::LocalSet`"); // Safety: Tasks are only polled and dropped from the thread that // spawns them. let (task, handle) = unsafe { task::joinable_local(future) }; cx.tasks.borrow_mut().queue.push_back(task); handle }) } } /// Initial queue capacity const INITIAL_CAPACITY: usize = 64; /// Max number of tasks to poll per tick. const MAX_TASKS_PER_TICK: usize = 61; /// How often it check the remote queue first const REMOTE_FIRST_INTERVAL: u8 = 31; impl LocalSet { /// Returns a new local task set. pub fn new() -> LocalSet { LocalSet { tick: Cell::new(0), context: Context { tasks: RefCell::new(Tasks { owned: LinkedList::new(), queue: VecDeque::with_capacity(INITIAL_CAPACITY), }), shared: Arc::new(Shared { queue: Mutex::new(VecDeque::with_capacity(INITIAL_CAPACITY)), waker: AtomicWaker::new(), }), }, _not_send: PhantomData, } } /// Spawns a `!Send` task onto the local task set. /// /// This task is guaranteed to be run on the current thread. /// /// Unlike the free function [`spawn_local`], this method may be used to /// spawn local tasks when the task set is _not_ running. For example: /// ```rust /// use tokio::task; /// /// #[tokio::main] /// async fn main() { /// let local = task::LocalSet::new(); /// /// // Spawn a future on the local set. This future will be run when /// // we call `run_until` to drive the task set. /// local.spawn_local(async { /// // ... /// }); /// /// // Run the local task set. /// local.run_until(async move { /// // ... /// }).await; /// /// // When `run` finishes, we can spawn _more_ futures, which will /// // run in subsequent calls to `run_until`. /// local.spawn_local(async { /// // ... /// }); /// /// local.run_until(async move { /// // ... /// }).await; /// } /// ``` /// [`spawn_local`]: fn@spawn_local #[cfg_attr(tokio_track_caller, track_caller)] pub fn spawn_local<F>(&self, future: F) -> JoinHandle<F::Output> where F: Future + 'static, F::Output: 'static, { let future = crate::util::trace::task(future, "local"); let (task, handle) = unsafe { task::joinable_local(future) }; self.context.tasks.borrow_mut().queue.push_back(task); self.context.shared.waker.wake(); handle } /// Runs a future to completion on the provided runtime, driving any local /// futures spawned on this task set on the current thread. /// /// This runs the given future on the runtime, blocking until it is /// complete, and yielding its resolved result. Any tasks or timers which /// the future spawns internally will be executed on the runtime. The future /// may also call [`spawn_local`] to spawn_local additional local futures on the /// current thread. /// /// This method should not be called from an asynchronous context. /// /// # Panics /// /// This function panics if the executor is at capacity, if the provided /// future panics, or if called within an asynchronous execution context. /// /// # Notes /// /// Since this function internally calls [`Runtime::block_on`], and drives /// futures in the local task set inside that call to `block_on`, the local /// futures may not use [in-place blocking]. If a blocking call needs to be /// issued from a local task, the [`spawn_blocking`] API may be used instead. /// /// For example, this will panic: /// ```should_panic /// use tokio::runtime::Runtime; /// use tokio::task; /// /// let rt = Runtime::new().unwrap(); /// let local = task::LocalSet::new(); /// local.block_on(&rt, async { /// let join = task::spawn_local(async { /// let blocking_result = task::block_in_place(|| { /// // ... /// }); /// // ... /// }); /// join.await.unwrap(); /// }) /// ``` /// This, however, will not panic: /// ``` /// use tokio::runtime::Runtime; /// use tokio::task; /// /// let rt = Runtime::new().unwrap(); /// let local = task::LocalSet::new(); /// local.block_on(&rt, async { /// let join = task::spawn_local(async { /// let blocking_result = task::spawn_blocking(|| { /// // ... /// }).await; /// // ... /// }); /// join.await.unwrap(); /// }) /// ``` /// /// [`spawn_local`]: fn@spawn_local /// [`Runtime::block_on`]: method@crate::runtime::Runtime::block_on /// [in-place blocking]: fn@crate::task::block_in_place /// [`spawn_blocking`]: fn@crate::task::spawn_blocking #[cfg(feature = "rt")] #[cfg_attr(docsrs, doc(cfg(feature = "rt")))] pub fn block_on<F>(&self, rt: &crate::runtime::Runtime, future: F) -> F::Output where F: Future, { rt.block_on(self.run_until(future)) } /// Run a future to completion on the local set, returning its output. /// /// This returns a future that runs the given future with a local set, /// allowing it to call [`spawn_local`] to spawn additional `!Send` futures. /// Any local futures spawned on the local set will be driven in the /// background until the future passed to `run_until` completes. When the future /// passed to `run` finishes, any local futures which have not completed /// will remain on the local set, and will be driven on subsequent calls to /// `run_until` or when [awaiting the local set] itself. /// /// # Examples /// /// ```rust /// use tokio::task; /// /// #[tokio::main] /// async fn main() { /// task::LocalSet::new().run_until(async { /// task::spawn_local(async move { /// // ... /// }).await.unwrap(); /// // ... /// }).await; /// } /// ``` /// /// [`spawn_local`]: fn@spawn_local /// [awaiting the local set]: #awaiting-a-localset pub async fn run_until<F>(&self, future: F) -> F::Output where F: Future, { let run_until = RunUntil { future, local_set: self, }; run_until.await } /// Tick the scheduler, returning whether the local future needs to be /// notified again. fn tick(&self) -> bool { for _ in 0..MAX_TASKS_PER_TICK { match self.next_task() { // Run the task // // Safety: As spawned tasks are `!Send`, `run_unchecked` must be // used. We are responsible for maintaining the invariant that // `run_unchecked` is only called on threads that spawned the // task initially. Because `LocalSet` itself is `!Send`, and // `spawn_local` spawns into the `LocalSet` on the current // thread, the invariant is maintained. Some(task) => crate::coop::budget(|| task.run()), // We have fully drained the queue of notified tasks, so the // local future doesn't need to be notified again — it can wait // until something else wakes a task in the local set. None => return false, } } true } fn next_task(&self) -> Option<task::Notified<Arc<Shared>>> { let tick = self.tick.get(); self.tick.set(tick.wrapping_add(1)); if tick % REMOTE_FIRST_INTERVAL == 0 { self.context .shared .queue .lock() .unwrap() .pop_front() .or_else(|| self.context.tasks.borrow_mut().queue.pop_front()) } else { self.context .tasks .borrow_mut() .queue .pop_front() .or_else(|| self.context.shared.queue.lock().unwrap().pop_front()) } } fn with<T>(&self, f: impl FnOnce() -> T) -> T { CURRENT.set(&self.context, f) } } impl fmt::Debug for LocalSet { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_struct("LocalSet").finish() } } impl Future for LocalSet { type Output = (); fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> { // Register the waker before starting to work self.context.shared.waker.register_by_ref(cx.waker()); if self.with(|| self.tick()) { // If `tick` returns true, we need to notify the local future again: // there are still tasks remaining in the run queue. cx.waker().wake_by_ref(); Poll::Pending } else if self.context.tasks.borrow().owned.is_empty() { // If the scheduler has no remaining futures, we're done! Poll::Ready(()) } else { // There are still futures in the local set, but we've polled all the // futures in the run queue. Therefore, we can just return Pending // since the remaining futures will be woken from somewhere else. Poll::Pending } } } impl Default for LocalSet { fn default() -> LocalSet { LocalSet::new() } } impl Drop for LocalSet { fn drop(&mut self) { self.with(|| { // Loop required here to ensure borrow is dropped between iterations #[allow(clippy::while_let_loop)] loop { let task = match self.context.tasks.borrow_mut().owned.pop_back() { Some(task) => task, None => break, }; // Safety: same as `run_unchecked`. task.shutdown(); } for task in self.context.tasks.borrow_mut().queue.drain(..) { task.shutdown(); } for task in self.context.shared.queue.lock().unwrap().drain(..) { task.shutdown(); } assert!(self.context.tasks.borrow().owned.is_empty()); }); } } // === impl LocalFuture === impl<T: Future> Future for RunUntil<'_, T> { type Output = T::Output; fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> { let me = self.project(); me.local_set.with(|| { me.local_set .context .shared .waker .register_by_ref(cx.waker()); let _no_blocking = crate::runtime::enter::disallow_blocking(); let f = me.future; if let Poll::Ready(output) = crate::coop::budget(|| f.poll(cx)) { return Poll::Ready(output); } if me.local_set.tick() { // If `tick` returns `true`, we need to notify the local future again: // there are still tasks remaining in the run queue. cx.waker().wake_by_ref(); } Poll::Pending }) } } impl Shared { /// Schedule the provided task on the scheduler. fn schedule(&self, task: task::Notified<Arc<Self>>) { CURRENT.with(|maybe_cx| match maybe_cx { Some(cx) if cx.shared.ptr_eq(self) => { cx.tasks.borrow_mut().queue.push_back(task); } _ => { self.queue.lock().unwrap().push_back(task); self.waker.wake(); } }); } fn ptr_eq(&self, other: &Shared) -> bool { std::ptr::eq(self, other) } } impl task::Schedule for Arc<Shared> { fn bind(task: Task<Self>) -> Arc<Shared> { CURRENT.with(|maybe_cx| { let cx = maybe_cx.expect("scheduler context missing"); cx.tasks.borrow_mut().owned.push_front(task); cx.shared.clone() }) } fn release(&self, task: &Task<Self>) -> Option<Task<Self>> { use std::ptr::NonNull; CURRENT.with(|maybe_cx| { let cx = maybe_cx.expect("scheduler context missing"); assert!(cx.shared.ptr_eq(self)); let ptr = NonNull::from(task.header()); // safety: task must be contained by list. It is inserted into the // list in `bind`. unsafe { cx.tasks.borrow_mut().owned.remove(ptr) } }) } fn schedule(&self, task: task::Notified<Self>) { Shared::schedule(self, task); } }