1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
use crate::task::JoinHandle; cfg_rt_multi_thread! { /// Runs the provided blocking function on the current thread without /// blocking the executor. /// /// In general, issuing a blocking call or performing a lot of compute in a /// future without yielding is not okay, as it may prevent the executor from /// driving other futures forward. This function runs the closure on the /// current thread by having the thread temporarily cease from being a core /// thread, and turns it into a blocking thread. See the [CPU-bound tasks /// and blocking code][blocking] section for more information. /// /// Although this function avoids starving other independently spawned /// tasks, any other code running concurrently in the same task will be /// suspended during the call to `block_in_place`. This can happen e.g. when /// using the [`join!`] macro. To avoid this issue, use [`spawn_blocking`] /// instead. /// /// Note that this function can only be used when using the `multi_thread` runtime. /// /// Code running behind `block_in_place` cannot be cancelled. When you shut /// down the executor, it will wait indefinitely for all blocking operations /// to finish. You can use [`shutdown_timeout`] to stop waiting for them /// after a certain timeout. Be aware that this will still not cancel the /// tasks — they are simply allowed to keep running after the method /// returns. /// /// [blocking]: ../index.html#cpu-bound-tasks-and-blocking-code /// [`spawn_blocking`]: fn@crate::task::spawn_blocking /// [`join!`]: macro@join /// [`thread::spawn`]: fn@std::thread::spawn /// [`shutdown_timeout`]: fn@crate::runtime::Runtime::shutdown_timeout /// /// # Examples /// /// ``` /// use tokio::task; /// /// # async fn docs() { /// task::block_in_place(move || { /// // do some compute-heavy work or call synchronous code /// }); /// # } /// ``` pub fn block_in_place<F, R>(f: F) -> R where F: FnOnce() -> R, { crate::runtime::thread_pool::block_in_place(f) } } cfg_rt! { /// Runs the provided closure on a thread where blocking is acceptable. /// /// In general, issuing a blocking call or performing a lot of compute in a /// future without yielding is problematic, as it may prevent the executor from /// driving other futures forward. This function runs the provided closure on a /// thread dedicated to blocking operations. See the [CPU-bound tasks and /// blocking code][blocking] section for more information. /// /// Tokio will spawn more blocking threads when they are requested through this /// function until the upper limit configured on the [`Builder`] is reached. /// This limit is very large by default, because `spawn_blocking` is often used /// for various kinds of IO operations that cannot be performed asynchronously. /// When you run CPU-bound code using `spawn_blocking`, you should keep this /// large upper limit in mind. When running many CPU-bound computations, a /// semaphore or some other synchronization primitive should be used to limit /// the number of computation executed in parallel. Specialized CPU-bound /// executors, such as [rayon], may also be a good fit. /// /// This function is intended for non-async operations that eventually finish on /// their own. If you want to spawn an ordinary thread, you should use /// [`thread::spawn`] instead. /// /// Closures spawned using `spawn_blocking` cannot be cancelled. When you shut /// down the executor, it will wait indefinitely for all blocking operations to /// finish. You can use [`shutdown_timeout`] to stop waiting for them after a /// certain timeout. Be aware that this will still not cancel the tasks — they /// are simply allowed to keep running after the method returns. /// /// Note that if you are using the single threaded runtime, this function will /// still spawn additional threads for blocking operations. The basic /// scheduler's single thread is only used for asynchronous code. /// /// [`Builder`]: struct@crate::runtime::Builder /// [blocking]: ../index.html#cpu-bound-tasks-and-blocking-code /// [rayon]: https://docs.rs/rayon /// [`thread::spawn`]: fn@std::thread::spawn /// [`shutdown_timeout`]: fn@crate::runtime::Runtime::shutdown_timeout /// /// # Examples /// /// ``` /// use tokio::task; /// /// # async fn docs() -> Result<(), Box<dyn std::error::Error>>{ /// let res = task::spawn_blocking(move || { /// // do some compute-heavy work or call synchronous code /// "done computing" /// }).await?; /// /// assert_eq!(res, "done computing"); /// # Ok(()) /// # } /// ``` #[cfg_attr(tokio_track_caller, track_caller)] pub fn spawn_blocking<F, R>(f: F) -> JoinHandle<R> where F: FnOnce() -> R + Send + 'static, R: Send + 'static, { crate::runtime::spawn_blocking(f) } }