1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
// Allow `unreachable_pub` warnings when sync is not enabled
// due to the usage of `Notify` within the `rt` feature set.
// When this module is compiled with `sync` enabled we will warn on
// this lint. When `rt` is enabled we use `pub(crate)` which
// triggers this warning but it is safe to ignore in this case.
#![cfg_attr(not(feature = "sync"), allow(unreachable_pub, dead_code))]

use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::Mutex;
use crate::util::linked_list::{self, LinkedList};

use std::cell::UnsafeCell;
use std::future::Future;
use std::marker::PhantomPinned;
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::SeqCst;
use std::task::{Context, Poll, Waker};

type WaitList = LinkedList<Waiter, <Waiter as linked_list::Link>::Target>;

/// Notify a single task to wake up.
///
/// `Notify` provides a basic mechanism to notify a single task of an event.
/// `Notify` itself does not carry any data. Instead, it is to be used to signal
/// another task to perform an operation.
///
/// `Notify` can be thought of as a [`Semaphore`] starting with 0 permits.
/// [`notified().await`] waits for a permit to become available, and [`notify_one()`]
/// sets a permit **if there currently are no available permits**.
///
/// The synchronization details of `Notify` are similar to
/// [`thread::park`][park] and [`Thread::unpark`][unpark] from std. A [`Notify`]
/// value contains a single permit. [`notified().await`] waits for the permit to
/// be made available, consumes the permit, and resumes.  [`notify_one()`] sets the
/// permit, waking a pending task if there is one.
///
/// If `notify_one()` is called **before** `notified().await`, then the next call to
/// `notified().await` will complete immediately, consuming the permit. Any
/// subsequent calls to `notified().await` will wait for a new permit.
///
/// If `notify_one()` is called **multiple** times before `notified().await`, only a
/// **single** permit is stored. The next call to `notified().await` will
/// complete immediately, but the one after will wait for a new permit.
///
/// # Examples
///
/// Basic usage.
///
/// ```
/// use tokio::sync::Notify;
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
///     let notify = Arc::new(Notify::new());
///     let notify2 = notify.clone();
///
///     tokio::spawn(async move {
///         notify2.notified().await;
///         println!("received notification");
///     });
///
///     println!("sending notification");
///     notify.notify_one();
/// }
/// ```
///
/// Unbound mpsc channel.
///
/// ```
/// use tokio::sync::Notify;
///
/// use std::collections::VecDeque;
/// use std::sync::Mutex;
///
/// struct Channel<T> {
///     values: Mutex<VecDeque<T>>,
///     notify: Notify,
/// }
///
/// impl<T> Channel<T> {
///     pub fn send(&self, value: T) {
///         self.values.lock().unwrap()
///             .push_back(value);
///
///         // Notify the consumer a value is available
///         self.notify.notify_one();
///     }
///
///     pub async fn recv(&self) -> T {
///         loop {
///             // Drain values
///             if let Some(value) = self.values.lock().unwrap().pop_front() {
///                 return value;
///             }
///
///             // Wait for values to be available
///             self.notify.notified().await;
///         }
///     }
/// }
/// ```
///
/// [park]: std::thread::park
/// [unpark]: std::thread::Thread::unpark
/// [`notified().await`]: Notify::notified()
/// [`notify_one()`]: Notify::notify_one()
/// [`Semaphore`]: crate::sync::Semaphore
#[derive(Debug)]
pub struct Notify {
    // This uses 2 bits to store one of `EMPTY`,
    // `WAITING` or `NOTIFIED`. The rest of the bits
    // are used to store the number of times `notify_waiters`
    // was called.
    state: AtomicUsize,
    waiters: Mutex<WaitList>,
}

#[derive(Debug, Clone, Copy)]
enum NotificationType {
    // Notification triggered by calling `notify_waiters`
    AllWaiters,
    // Notification triggered by calling `notify_one`
    OneWaiter,
}

#[derive(Debug)]
struct Waiter {
    /// Intrusive linked-list pointers
    pointers: linked_list::Pointers<Waiter>,

    /// Waiting task's waker
    waker: Option<Waker>,

    /// `true` if the notification has been assigned to this waiter.
    notified: Option<NotificationType>,

    /// Should not be `Unpin`.
    _p: PhantomPinned,
}

/// Future returned from `notified()`
#[derive(Debug)]
pub struct Notified<'a> {
    /// The `Notify` being received on.
    notify: &'a Notify,

    /// The current state of the receiving process.
    state: State,

    /// Entry in the waiter `LinkedList`.
    waiter: UnsafeCell<Waiter>,
}

unsafe impl<'a> Send for Notified<'a> {}
unsafe impl<'a> Sync for Notified<'a> {}

#[derive(Debug)]
enum State {
    Init(usize),
    Waiting,
    Done,
}

const NOTIFY_WAITERS_SHIFT: usize = 2;
const STATE_MASK: usize = (1 << NOTIFY_WAITERS_SHIFT) - 1;
const NOTIFY_WAITERS_CALLS_MASK: usize = !STATE_MASK;

/// Initial "idle" state
const EMPTY: usize = 0;

/// One or more threads are currently waiting to be notified.
const WAITING: usize = 1;

/// Pending notification
const NOTIFIED: usize = 2;

fn set_state(data: usize, state: usize) -> usize {
    (data & NOTIFY_WAITERS_CALLS_MASK) | (state & STATE_MASK)
}

fn get_state(data: usize) -> usize {
    data & STATE_MASK
}

fn get_num_notify_waiters_calls(data: usize) -> usize {
    (data & NOTIFY_WAITERS_CALLS_MASK) >> NOTIFY_WAITERS_SHIFT
}

fn inc_num_notify_waiters_calls(data: usize) -> usize {
    data + (1 << NOTIFY_WAITERS_SHIFT)
}

impl Notify {
    /// Create a new `Notify`, initialized without a permit.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    ///
    /// let notify = Notify::new();
    /// ```
    pub fn new() -> Notify {
        Notify {
            state: AtomicUsize::new(0),
            waiters: Mutex::new(LinkedList::new()),
        }
    }

    /// Create a new `Notify`, initialized without a permit.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    ///
    /// static NOTIFY: Notify = Notify::const_new();
    /// ```
    #[cfg(all(feature = "parking_lot", not(all(loom, test))))]
    #[cfg_attr(docsrs, doc(cfg(feature = "parking_lot")))]
    pub const fn const_new() -> Notify {
        Notify {
            state: AtomicUsize::new(0),
            waiters: Mutex::const_new(LinkedList::new()),
        }
    }

    /// Wait for a notification.
    ///
    /// Equivalent to:
    ///
    /// ```ignore
    /// async fn notified(&self);
    /// ```
    ///
    /// Each `Notify` value holds a single permit. If a permit is available from
    /// an earlier call to [`notify_one()`], then `notified().await` will complete
    /// immediately, consuming that permit. Otherwise, `notified().await` waits
    /// for a permit to be made available by the next call to `notify_one()`.
    ///
    /// [`notify_one()`]: Notify::notify_one
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    /// use std::sync::Arc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let notify = Arc::new(Notify::new());
    ///     let notify2 = notify.clone();
    ///
    ///     tokio::spawn(async move {
    ///         notify2.notified().await;
    ///         println!("received notification");
    ///     });
    ///
    ///     println!("sending notification");
    ///     notify.notify_one();
    /// }
    /// ```
    pub fn notified(&self) -> Notified<'_> {
        // we load the number of times notify_waiters
        // was called and store that in our initial state
        let state = self.state.load(SeqCst);
        Notified {
            notify: self,
            state: State::Init(state >> NOTIFY_WAITERS_SHIFT),
            waiter: UnsafeCell::new(Waiter {
                pointers: linked_list::Pointers::new(),
                waker: None,
                notified: None,
                _p: PhantomPinned,
            }),
        }
    }

    /// Notifies a waiting task
    ///
    /// If a task is currently waiting, that task is notified. Otherwise, a
    /// permit is stored in this `Notify` value and the **next** call to
    /// [`notified().await`] will complete immediately consuming the permit made
    /// available by this call to `notify_one()`.
    ///
    /// At most one permit may be stored by `Notify`. Many sequential calls to
    /// `notify_one` will result in a single permit being stored. The next call to
    /// `notified().await` will complete immediately, but the one after that
    /// will wait.
    ///
    /// [`notified().await`]: Notify::notified()
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    /// use std::sync::Arc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let notify = Arc::new(Notify::new());
    ///     let notify2 = notify.clone();
    ///
    ///     tokio::spawn(async move {
    ///         notify2.notified().await;
    ///         println!("received notification");
    ///     });
    ///
    ///     println!("sending notification");
    ///     notify.notify_one();
    /// }
    /// ```
    // Alias for old name in 0.x
    #[cfg_attr(docsrs, doc(alias = "notify"))]
    pub fn notify_one(&self) {
        // Load the current state
        let mut curr = self.state.load(SeqCst);

        // If the state is `EMPTY`, transition to `NOTIFIED` and return.
        while let EMPTY | NOTIFIED = get_state(curr) {
            // The compare-exchange from `NOTIFIED` -> `NOTIFIED` is intended. A
            // happens-before synchronization must happen between this atomic
            // operation and a task calling `notified().await`.
            let new = set_state(curr, NOTIFIED);
            let res = self.state.compare_exchange(curr, new, SeqCst, SeqCst);

            match res {
                // No waiters, no further work to do
                Ok(_) => return,
                Err(actual) => {
                    curr = actual;
                }
            }
        }

        // There are waiters, the lock must be acquired to notify.
        let mut waiters = self.waiters.lock();

        // The state must be reloaded while the lock is held. The state may only
        // transition out of WAITING while the lock is held.
        curr = self.state.load(SeqCst);

        if let Some(waker) = notify_locked(&mut waiters, &self.state, curr) {
            drop(waiters);
            waker.wake();
        }
    }

    /// Notifies all waiting tasks
    ///
    /// If a task is currently waiting, that task is notified. Unlike with
    /// `notify_one()`, no permit is stored to be used by the next call to
    /// `notified().await`. The purpose of this method is to notify all
    /// already registered waiters. Registering for notification is done by
    /// acquiring an instance of the `Notified` future via calling `notified()`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    /// use std::sync::Arc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let notify = Arc::new(Notify::new());
    ///     let notify2 = notify.clone();
    ///
    ///     let notified1 = notify.notified();
    ///     let notified2 = notify.notified();
    ///
    ///     let handle = tokio::spawn(async move {
    ///         println!("sending notifications");
    ///         notify2.notify_waiters();
    ///     });
    ///
    ///     notified1.await;
    ///     notified2.await;
    ///     println!("received notifications");
    /// }
    /// ```
    pub fn notify_waiters(&self) {
        const NUM_WAKERS: usize = 32;

        let mut wakers: [Option<Waker>; NUM_WAKERS] = Default::default();
        let mut curr_waker = 0;

        // There are waiters, the lock must be acquired to notify.
        let mut waiters = self.waiters.lock();

        // The state must be reloaded while the lock is held. The state may only
        // transition out of WAITING while the lock is held.
        let curr = self.state.load(SeqCst);

        if let EMPTY | NOTIFIED = get_state(curr) {
            // There are no waiting tasks. In this case, no synchronization is
            // established between `notify` and `notified().await`.
            // All we need to do is increment the number of times this
            // method was called.
            self.state.store(inc_num_notify_waiters_calls(curr), SeqCst);
            return;
        }

        // At this point, it is guaranteed that the state will not
        // concurrently change, as holding the lock is required to
        // transition **out** of `WAITING`.
        'outer: loop {
            while curr_waker < NUM_WAKERS {
                match waiters.pop_back() {
                    Some(mut waiter) => {
                        // Safety: `waiters` lock is still held.
                        let waiter = unsafe { waiter.as_mut() };

                        assert!(waiter.notified.is_none());

                        waiter.notified = Some(NotificationType::AllWaiters);

                        if let Some(waker) = waiter.waker.take() {
                            wakers[curr_waker] = Some(waker);
                            curr_waker += 1;
                        }
                    }
                    None => {
                        break 'outer;
                    }
                }
            }

            drop(waiters);

            for waker in wakers.iter_mut().take(curr_waker) {
                waker.take().unwrap().wake();
            }

            curr_waker = 0;

            // Acquire the lock again.
            waiters = self.waiters.lock();
        }

        // All waiters will be notified, the state must be transitioned to
        // `EMPTY`. As transitioning **from** `WAITING` requires the lock to be
        // held, a `store` is sufficient.
        let new = set_state(inc_num_notify_waiters_calls(curr), EMPTY);
        self.state.store(new, SeqCst);

        // Release the lock before notifying
        drop(waiters);

        for waker in wakers.iter_mut().take(curr_waker) {
            waker.take().unwrap().wake();
        }
    }
}

impl Default for Notify {
    fn default() -> Notify {
        Notify::new()
    }
}

fn notify_locked(waiters: &mut WaitList, state: &AtomicUsize, curr: usize) -> Option<Waker> {
    loop {
        match get_state(curr) {
            EMPTY | NOTIFIED => {
                let res = state.compare_exchange(curr, set_state(curr, NOTIFIED), SeqCst, SeqCst);

                match res {
                    Ok(_) => return None,
                    Err(actual) => {
                        let actual_state = get_state(actual);
                        assert!(actual_state == EMPTY || actual_state == NOTIFIED);
                        state.store(set_state(actual, NOTIFIED), SeqCst);
                        return None;
                    }
                }
            }
            WAITING => {
                // At this point, it is guaranteed that the state will not
                // concurrently change as holding the lock is required to
                // transition **out** of `WAITING`.
                //
                // Get a pending waiter
                let mut waiter = waiters.pop_back().unwrap();

                // Safety: `waiters` lock is still held.
                let waiter = unsafe { waiter.as_mut() };

                assert!(waiter.notified.is_none());

                waiter.notified = Some(NotificationType::OneWaiter);
                let waker = waiter.waker.take();

                if waiters.is_empty() {
                    // As this the **final** waiter in the list, the state
                    // must be transitioned to `EMPTY`. As transitioning
                    // **from** `WAITING` requires the lock to be held, a
                    // `store` is sufficient.
                    state.store(set_state(curr, EMPTY), SeqCst);
                }

                return waker;
            }
            _ => unreachable!(),
        }
    }
}

// ===== impl Notified =====

impl Notified<'_> {
    /// A custom `project` implementation is used in place of `pin-project-lite`
    /// as a custom drop implementation is needed.
    fn project(self: Pin<&mut Self>) -> (&Notify, &mut State, &UnsafeCell<Waiter>) {
        unsafe {
            // Safety: both `notify` and `state` are `Unpin`.

            is_unpin::<&Notify>();
            is_unpin::<AtomicUsize>();

            let me = self.get_unchecked_mut();
            (&me.notify, &mut me.state, &me.waiter)
        }
    }
}

impl Future for Notified<'_> {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
        use State::*;

        let (notify, state, waiter) = self.project();

        loop {
            match *state {
                Init(initial_notify_waiters_calls) => {
                    let curr = notify.state.load(SeqCst);

                    // Optimistically try acquiring a pending notification
                    let res = notify.state.compare_exchange(
                        set_state(curr, NOTIFIED),
                        set_state(curr, EMPTY),
                        SeqCst,
                        SeqCst,
                    );

                    if res.is_ok() {
                        // Acquired the notification
                        *state = Done;
                        return Poll::Ready(());
                    }

                    // Acquire the lock and attempt to transition to the waiting
                    // state.
                    let mut waiters = notify.waiters.lock();

                    // Reload the state with the lock held
                    let mut curr = notify.state.load(SeqCst);

                    // if notify_waiters has been called after the future
                    // was created, then we are done
                    if get_num_notify_waiters_calls(curr) != initial_notify_waiters_calls {
                        *state = Done;
                        return Poll::Ready(());
                    }

                    // Transition the state to WAITING.
                    loop {
                        match get_state(curr) {
                            EMPTY => {
                                // Transition to WAITING
                                let res = notify.state.compare_exchange(
                                    set_state(curr, EMPTY),
                                    set_state(curr, WAITING),
                                    SeqCst,
                                    SeqCst,
                                );

                                if let Err(actual) = res {
                                    assert_eq!(get_state(actual), NOTIFIED);
                                    curr = actual;
                                } else {
                                    break;
                                }
                            }
                            WAITING => break,
                            NOTIFIED => {
                                // Try consuming the notification
                                let res = notify.state.compare_exchange(
                                    set_state(curr, NOTIFIED),
                                    set_state(curr, EMPTY),
                                    SeqCst,
                                    SeqCst,
                                );

                                match res {
                                    Ok(_) => {
                                        // Acquired the notification
                                        *state = Done;
                                        return Poll::Ready(());
                                    }
                                    Err(actual) => {
                                        assert_eq!(get_state(actual), EMPTY);
                                        curr = actual;
                                    }
                                }
                            }
                            _ => unreachable!(),
                        }
                    }

                    // Safety: called while locked.
                    unsafe {
                        (*waiter.get()).waker = Some(cx.waker().clone());
                    }

                    // Insert the waiter into the linked list
                    //
                    // safety: pointers from `UnsafeCell` are never null.
                    waiters.push_front(unsafe { NonNull::new_unchecked(waiter.get()) });

                    *state = Waiting;

                    return Poll::Pending;
                }
                Waiting => {
                    // Currently in the "Waiting" state, implying the caller has
                    // a waiter stored in the waiter list (guarded by
                    // `notify.waiters`). In order to access the waker fields,
                    // we must hold the lock.

                    let waiters = notify.waiters.lock();

                    // Safety: called while locked
                    let w = unsafe { &mut *waiter.get() };

                    if w.notified.is_some() {
                        // Our waker has been notified. Reset the fields and
                        // remove it from the list.
                        w.waker = None;
                        w.notified = None;

                        *state = Done;
                    } else {
                        // Update the waker, if necessary.
                        if !w.waker.as_ref().unwrap().will_wake(cx.waker()) {
                            w.waker = Some(cx.waker().clone());
                        }

                        return Poll::Pending;
                    }

                    // Explicit drop of the lock to indicate the scope that the
                    // lock is held. Because holding the lock is required to
                    // ensure safe access to fields not held within the lock, it
                    // is helpful to visualize the scope of the critical
                    // section.
                    drop(waiters);
                }
                Done => {
                    return Poll::Ready(());
                }
            }
        }
    }
}

impl Drop for Notified<'_> {
    fn drop(&mut self) {
        use State::*;

        // Safety: The type only transitions to a "Waiting" state when pinned.
        let (notify, state, waiter) = unsafe { Pin::new_unchecked(self).project() };

        // This is where we ensure safety. The `Notified` value is being
        // dropped, which means we must ensure that the waiter entry is no
        // longer stored in the linked list.
        if let Waiting = *state {
            let mut waiters = notify.waiters.lock();
            let mut notify_state = notify.state.load(SeqCst);

            // `Notify.state` may be in any of the three states (Empty, Waiting,
            // Notified). It doesn't actually matter what the atomic is set to
            // at this point. We hold the lock and will ensure the atomic is in
            // the correct state once the lock is dropped.
            //
            // Because the atomic state is not checked, at first glance, it may
            // seem like this routine does not handle the case where the
            // receiver is notified but has not yet observed the notification.
            // If this happens, no matter how many notifications happen between
            // this receiver being notified and the receive future dropping, all
            // we need to do is ensure that one notification is returned back to
            // the `Notify`. This is done by calling `notify_locked` if `self`
            // has the `notified` flag set.

            // remove the entry from the list
            //
            // safety: the waiter is only added to `waiters` by virtue of it
            // being the only `LinkedList` available to the type.
            unsafe { waiters.remove(NonNull::new_unchecked(waiter.get())) };

            if waiters.is_empty() {
                notify_state = set_state(notify_state, EMPTY);
                // If the state *should* be `NOTIFIED`, the call to
                // `notify_locked` below will end up doing the
                // `store(NOTIFIED)`. If a concurrent receiver races and
                // observes the incorrect `EMPTY` state, it will then obtain the
                // lock and block until `notify.state` is in the correct final
                // state.
                notify.state.store(notify_state, SeqCst);
            }

            // See if the node was notified but not received. In this case, if
            // the notification was triggered via `notify_one`, it must be sent
            // to the next waiter.
            //
            // Safety: with the entry removed from the linked list, there can be
            // no concurrent access to the entry
            if let Some(NotificationType::OneWaiter) = unsafe { (*waiter.get()).notified } {
                if let Some(waker) = notify_locked(&mut waiters, &notify.state, notify_state) {
                    drop(waiters);
                    waker.wake();
                }
            }
        }
    }
}

/// # Safety
///
/// `Waiter` is forced to be !Unpin.
unsafe impl linked_list::Link for Waiter {
    type Handle = NonNull<Waiter>;
    type Target = Waiter;

    fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> {
        *handle
    }

    unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
        ptr
    }

    unsafe fn pointers(mut target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
        NonNull::from(&mut target.as_mut().pointers)
    }
}

fn is_unpin<T: Unpin>() {}