1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
#![cfg_attr(loom, allow(dead_code, unreachable_pub, unused_imports))] //! Synchronization primitives for use in asynchronous contexts. //! //! Tokio programs tend to be organized as a set of [tasks] where each task //! operates independently and may be executed on separate physical threads. The //! synchronization primitives provided in this module permit these independent //! tasks to communicate together. //! //! [tasks]: crate::task //! //! # Message passing //! //! The most common form of synchronization in a Tokio program is message //! passing. Two tasks operate independently and send messages to each other to //! synchronize. Doing so has the advantage of avoiding shared state. //! //! Message passing is implemented using channels. A channel supports sending a //! message from one producer task to one or more consumer tasks. There are a //! few flavors of channels provided by Tokio. Each channel flavor supports //! different message passing patterns. When a channel supports multiple //! producers, many separate tasks may **send** messages. When a channel //! supports multiple consumers, many different separate tasks may **receive** //! messages. //! //! Tokio provides many different channel flavors as different message passing //! patterns are best handled with different implementations. //! //! ## `oneshot` channel //! //! The [`oneshot` channel][oneshot] supports sending a **single** value from a //! single producer to a single consumer. This channel is usually used to send //! the result of a computation to a waiter. //! //! **Example:** using a [`oneshot` channel][oneshot] to receive the result of a //! computation. //! //! ``` //! use tokio::sync::oneshot; //! //! async fn some_computation() -> String { //! "represents the result of the computation".to_string() //! } //! //! #[tokio::main] //! async fn main() { //! let (tx, rx) = oneshot::channel(); //! //! tokio::spawn(async move { //! let res = some_computation().await; //! tx.send(res).unwrap(); //! }); //! //! // Do other work while the computation is happening in the background //! //! // Wait for the computation result //! let res = rx.await.unwrap(); //! } //! ``` //! //! Note, if the task produces a computation result as its final //! action before terminating, the [`JoinHandle`] can be used to //! receive that value instead of allocating resources for the //! `oneshot` channel. Awaiting on [`JoinHandle`] returns `Result`. If //! the task panics, the `Joinhandle` yields `Err` with the panic //! cause. //! //! **Example:** //! //! ``` //! async fn some_computation() -> String { //! "the result of the computation".to_string() //! } //! //! #[tokio::main] //! async fn main() { //! let join_handle = tokio::spawn(async move { //! some_computation().await //! }); //! //! // Do other work while the computation is happening in the background //! //! // Wait for the computation result //! let res = join_handle.await.unwrap(); //! } //! ``` //! //! [oneshot]: oneshot //! [`JoinHandle`]: crate::task::JoinHandle //! //! ## `mpsc` channel //! //! The [`mpsc` channel][mpsc] supports sending **many** values from **many** //! producers to a single consumer. This channel is often used to send work to a //! task or to receive the result of many computations. //! //! **Example:** using an mpsc to incrementally stream the results of a series //! of computations. //! //! ``` //! use tokio::sync::mpsc; //! //! async fn some_computation(input: u32) -> String { //! format!("the result of computation {}", input) //! } //! //! #[tokio::main] //! async fn main() { //! let (tx, mut rx) = mpsc::channel(100); //! //! tokio::spawn(async move { //! for i in 0..10 { //! let res = some_computation(i).await; //! tx.send(res).await.unwrap(); //! } //! }); //! //! while let Some(res) = rx.recv().await { //! println!("got = {}", res); //! } //! } //! ``` //! //! The argument to `mpsc::channel` is the channel capacity. This is the maximum //! number of values that can be stored in the channel pending receipt at any //! given time. Properly setting this value is key in implementing robust //! programs as the channel capacity plays a critical part in handling back //! pressure. //! //! A common concurrency pattern for resource management is to spawn a task //! dedicated to managing that resource and using message passing between other //! tasks to interact with the resource. The resource may be anything that may //! not be concurrently used. Some examples include a socket and program state. //! For example, if multiple tasks need to send data over a single socket, spawn //! a task to manage the socket and use a channel to synchronize. //! //! **Example:** sending data from many tasks over a single socket using message //! passing. //! //! ```no_run //! use tokio::io::{self, AsyncWriteExt}; //! use tokio::net::TcpStream; //! use tokio::sync::mpsc; //! //! #[tokio::main] //! async fn main() -> io::Result<()> { //! let mut socket = TcpStream::connect("www.example.com:1234").await?; //! let (tx, mut rx) = mpsc::channel(100); //! //! for _ in 0..10 { //! // Each task needs its own `tx` handle. This is done by cloning the //! // original handle. //! let tx = tx.clone(); //! //! tokio::spawn(async move { //! tx.send(&b"data to write"[..]).await.unwrap(); //! }); //! } //! //! // The `rx` half of the channel returns `None` once **all** `tx` clones //! // drop. To ensure `None` is returned, drop the handle owned by the //! // current task. If this `tx` handle is not dropped, there will always //! // be a single outstanding `tx` handle. //! drop(tx); //! //! while let Some(res) = rx.recv().await { //! socket.write_all(res).await?; //! } //! //! Ok(()) //! } //! ``` //! //! The [`mpsc`][mpsc] and [`oneshot`][oneshot] channels can be combined to //! provide a request / response type synchronization pattern with a shared //! resource. A task is spawned to synchronize a resource and waits on commands //! received on a [`mpsc`][mpsc] channel. Each command includes a //! [`oneshot`][oneshot] `Sender` on which the result of the command is sent. //! //! **Example:** use a task to synchronize a `u64` counter. Each task sends an //! "fetch and increment" command. The counter value **before** the increment is //! sent over the provided `oneshot` channel. //! //! ``` //! use tokio::sync::{oneshot, mpsc}; //! use Command::Increment; //! //! enum Command { //! Increment, //! // Other commands can be added here //! } //! //! #[tokio::main] //! async fn main() { //! let (cmd_tx, mut cmd_rx) = mpsc::channel::<(Command, oneshot::Sender<u64>)>(100); //! //! // Spawn a task to manage the counter //! tokio::spawn(async move { //! let mut counter: u64 = 0; //! //! while let Some((cmd, response)) = cmd_rx.recv().await { //! match cmd { //! Increment => { //! let prev = counter; //! counter += 1; //! response.send(prev).unwrap(); //! } //! } //! } //! }); //! //! let mut join_handles = vec![]; //! //! // Spawn tasks that will send the increment command. //! for _ in 0..10 { //! let cmd_tx = cmd_tx.clone(); //! //! join_handles.push(tokio::spawn(async move { //! let (resp_tx, resp_rx) = oneshot::channel(); //! //! cmd_tx.send((Increment, resp_tx)).await.ok().unwrap(); //! let res = resp_rx.await.unwrap(); //! //! println!("previous value = {}", res); //! })); //! } //! //! // Wait for all tasks to complete //! for join_handle in join_handles.drain(..) { //! join_handle.await.unwrap(); //! } //! } //! ``` //! //! [mpsc]: mpsc //! //! ## `broadcast` channel //! //! The [`broadcast` channel] supports sending **many** values from //! **many** producers to **many** consumers. Each consumer will receive //! **each** value. This channel can be used to implement "fan out" style //! patterns common with pub / sub or "chat" systems. //! //! This channel tends to be used less often than `oneshot` and `mpsc` but still //! has its use cases. //! //! Basic usage //! //! ``` //! use tokio::sync::broadcast; //! //! #[tokio::main] //! async fn main() { //! let (tx, mut rx1) = broadcast::channel(16); //! let mut rx2 = tx.subscribe(); //! //! tokio::spawn(async move { //! assert_eq!(rx1.recv().await.unwrap(), 10); //! assert_eq!(rx1.recv().await.unwrap(), 20); //! }); //! //! tokio::spawn(async move { //! assert_eq!(rx2.recv().await.unwrap(), 10); //! assert_eq!(rx2.recv().await.unwrap(), 20); //! }); //! //! tx.send(10).unwrap(); //! tx.send(20).unwrap(); //! } //! ``` //! //! [`broadcast` channel]: crate::sync::broadcast //! //! ## `watch` channel //! //! The [`watch` channel] supports sending **many** values from a **single** //! producer to **many** consumers. However, only the **most recent** value is //! stored in the channel. Consumers are notified when a new value is sent, but //! there is no guarantee that consumers will see **all** values. //! //! The [`watch` channel] is similar to a [`broadcast` channel] with capacity 1. //! //! Use cases for the [`watch` channel] include broadcasting configuration //! changes or signalling program state changes, such as transitioning to //! shutdown. //! //! **Example:** use a [`watch` channel] to notify tasks of configuration //! changes. In this example, a configuration file is checked periodically. When //! the file changes, the configuration changes are signalled to consumers. //! //! ``` //! use tokio::sync::watch; //! use tokio::time::{self, Duration, Instant}; //! //! use std::io; //! //! #[derive(Debug, Clone, Eq, PartialEq)] //! struct Config { //! timeout: Duration, //! } //! //! impl Config { //! async fn load_from_file() -> io::Result<Config> { //! // file loading and deserialization logic here //! # Ok(Config { timeout: Duration::from_secs(1) }) //! } //! } //! //! async fn my_async_operation() { //! // Do something here //! } //! //! #[tokio::main] //! async fn main() { //! // Load initial configuration value //! let mut config = Config::load_from_file().await.unwrap(); //! //! // Create the watch channel, initialized with the loaded configuration //! let (tx, rx) = watch::channel(config.clone()); //! //! // Spawn a task to monitor the file. //! tokio::spawn(async move { //! loop { //! // Wait 10 seconds between checks //! time::sleep(Duration::from_secs(10)).await; //! //! // Load the configuration file //! let new_config = Config::load_from_file().await.unwrap(); //! //! // If the configuration changed, send the new config value //! // on the watch channel. //! if new_config != config { //! tx.send(new_config.clone()).unwrap(); //! config = new_config; //! } //! } //! }); //! //! let mut handles = vec![]; //! //! // Spawn tasks that runs the async operation for at most `timeout`. If //! // the timeout elapses, restart the operation. //! // //! // The task simultaneously watches the `Config` for changes. When the //! // timeout duration changes, the timeout is updated without restarting //! // the in-flight operation. //! for _ in 0..5 { //! // Clone a config watch handle for use in this task //! let mut rx = rx.clone(); //! //! let handle = tokio::spawn(async move { //! // Start the initial operation and pin the future to the stack. //! // Pinning to the stack is required to resume the operation //! // across multiple calls to `select!` //! let op = my_async_operation(); //! tokio::pin!(op); //! //! // Get the initial config value //! let mut conf = rx.borrow().clone(); //! //! let mut op_start = Instant::now(); //! let sleep = time::sleep_until(op_start + conf.timeout); //! tokio::pin!(sleep); //! //! loop { //! tokio::select! { //! _ = &mut sleep => { //! // The operation elapsed. Restart it //! op.set(my_async_operation()); //! //! // Track the new start time //! op_start = Instant::now(); //! //! // Restart the timeout //! sleep.set(time::sleep_until(op_start + conf.timeout)); //! } //! _ = rx.changed() => { //! conf = rx.borrow().clone(); //! //! // The configuration has been updated. Update the //! // `sleep` using the new `timeout` value. //! sleep.as_mut().reset(op_start + conf.timeout); //! } //! _ = &mut op => { //! // The operation completed! //! return //! } //! } //! } //! }); //! //! handles.push(handle); //! } //! //! for handle in handles.drain(..) { //! handle.await.unwrap(); //! } //! } //! ``` //! //! [`watch` channel]: mod@crate::sync::watch //! [`broadcast` channel]: mod@crate::sync::broadcast //! //! # State synchronization //! //! The remaining synchronization primitives focus on synchronizing state. //! These are asynchronous equivalents to versions provided by `std`. They //! operate in a similar way as their `std` counterparts but will wait //! asynchronously instead of blocking the thread. //! //! * [`Barrier`](Barrier) Ensures multiple tasks will wait for each other to //! reach a point in the program, before continuing execution all together. //! //! * [`Mutex`](Mutex) Mutual Exclusion mechanism, which ensures that at most //! one thread at a time is able to access some data. //! //! * [`Notify`](Notify) Basic task notification. `Notify` supports notifying a //! receiving task without sending data. In this case, the task wakes up and //! resumes processing. //! //! * [`RwLock`](RwLock) Provides a mutual exclusion mechanism which allows //! multiple readers at the same time, while allowing only one writer at a //! time. In some cases, this can be more efficient than a mutex. //! //! * [`Semaphore`](Semaphore) Limits the amount of concurrency. A semaphore //! holds a number of permits, which tasks may request in order to enter a //! critical section. Semaphores are useful for implementing limiting or //! bounding of any kind. cfg_sync! { mod barrier; pub use barrier::{Barrier, BarrierWaitResult}; pub mod broadcast; pub mod mpsc; mod mutex; pub use mutex::{Mutex, MutexGuard, TryLockError, OwnedMutexGuard}; pub(crate) mod notify; pub use notify::Notify; pub mod oneshot; pub(crate) mod batch_semaphore; pub use batch_semaphore::{AcquireError, TryAcquireError}; mod semaphore; pub use semaphore::{Semaphore, SemaphorePermit, OwnedSemaphorePermit}; mod rwlock; pub use rwlock::RwLock; pub use rwlock::read_guard::RwLockReadGuard; pub use rwlock::write_guard::RwLockWriteGuard; pub use rwlock::write_guard_mapped::RwLockMappedWriteGuard; mod task; pub(crate) use task::AtomicWaker; pub mod watch; } cfg_not_sync! { cfg_fs! { pub(crate) mod batch_semaphore; mod mutex; pub(crate) use mutex::Mutex; } #[cfg(any(feature = "rt", feature = "signal", all(unix, feature = "process")))] pub(crate) mod notify; #[cfg(any(feature = "rt", all(windows, feature = "process")))] pub(crate) mod oneshot; cfg_atomic_waker_impl! { mod task; pub(crate) use task::AtomicWaker; } #[cfg(any(feature = "signal", all(unix, feature = "process")))] pub(crate) mod watch; } /// Unit tests #[cfg(test)] mod tests;