1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
#![cfg_attr(not(feature = "sync"), allow(unreachable_pub, dead_code))]
//! # Implementation Details
//!
//! The semaphore is implemented using an intrusive linked list of waiters. An
//! atomic counter tracks the number of available permits. If the semaphore does
//! not contain the required number of permits, the task attempting to acquire
//! permits places its waker at the end of a queue. When new permits are made
//! available (such as by releasing an initial acquisition), they are assigned
//! to the task at the front of the queue, waking that task if its requested
//! number of permits is met.
//!
//! Because waiters are enqueued at the back of the linked list and dequeued
//! from the front, the semaphore is fair. Tasks trying to acquire large numbers
//! of permits at a time will always be woken eventually, even if many other
//! tasks are acquiring smaller numbers of permits. This means that in a
//! use-case like tokio's read-write lock, writers will not be starved by
//! readers.
use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::{Mutex, MutexGuard};
use crate::util::linked_list::{self, LinkedList};

use std::future::Future;
use std::marker::PhantomPinned;
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::*;
use std::task::Poll::*;
use std::task::{Context, Poll, Waker};
use std::{cmp, fmt};

/// An asynchronous counting semaphore which permits waiting on multiple permits at once.
pub(crate) struct Semaphore {
    waiters: Mutex<Waitlist>,
    /// The current number of available permits in the semaphore.
    permits: AtomicUsize,
}

struct Waitlist {
    queue: LinkedList<Waiter, <Waiter as linked_list::Link>::Target>,
    closed: bool,
}

/// Error returned from the [`Semaphore::try_acquire`] function.
///
/// [`Semaphore::try_acquire`]: crate::sync::Semaphore::try_acquire
#[derive(Debug, PartialEq)]
pub enum TryAcquireError {
    /// The semaphore has been [closed] and cannot issue new permits.
    ///
    /// [closed]: crate::sync::Semaphore::close
    Closed,

    /// The semaphore has no available permits.
    NoPermits,
}
/// Error returned from the [`Semaphore::acquire`] function.
///
/// An `acquire` operation can only fail if the semaphore has been
/// [closed].
///
/// [closed]: crate::sync::Semaphore::close
/// [`Semaphore::acquire`]: crate::sync::Semaphore::acquire
#[derive(Debug)]
pub struct AcquireError(());

pub(crate) struct Acquire<'a> {
    node: Waiter,
    semaphore: &'a Semaphore,
    num_permits: u32,
    queued: bool,
}

/// An entry in the wait queue.
struct Waiter {
    /// The current state of the waiter.
    ///
    /// This is either the number of remaining permits required by
    /// the waiter, or a flag indicating that the waiter is not yet queued.
    state: AtomicUsize,

    /// The waker to notify the task awaiting permits.
    ///
    /// # Safety
    ///
    /// This may only be accessed while the wait queue is locked.
    waker: UnsafeCell<Option<Waker>>,

    /// Intrusive linked-list pointers.
    ///
    /// # Safety
    ///
    /// This may only be accessed while the wait queue is locked.
    ///
    /// TODO: Ideally, we would be able to use loom to enforce that
    /// this isn't accessed concurrently. However, it is difficult to
    /// use a `UnsafeCell` here, since the `Link` trait requires _returning_
    /// references to `Pointers`, and `UnsafeCell` requires that checked access
    /// take place inside a closure. We should consider changing `Pointers` to
    /// use `UnsafeCell` internally.
    pointers: linked_list::Pointers<Waiter>,

    /// Should not be `Unpin`.
    _p: PhantomPinned,
}

impl Semaphore {
    /// The maximum number of permits which a semaphore can hold.
    ///
    /// Note that this reserves three bits of flags in the permit counter, but
    /// we only actually use one of them. However, the previous semaphore
    /// implementation used three bits, so we will continue to reserve them to
    /// avoid a breaking change if additional flags need to be added in the
    /// future.
    pub(crate) const MAX_PERMITS: usize = std::usize::MAX >> 3;
    const CLOSED: usize = 1;
    // The least-significant bit in the number of permits is reserved to use
    // as a flag indicating that the semaphore has been closed. Consequently
    // PERMIT_SHIFT is used to leave that bit for that purpose.
    const PERMIT_SHIFT: usize = 1;

    /// Creates a new semaphore with the initial number of permits
    ///
    /// Maximum number of permits on 32-bit platforms is `1<<29`.
    pub(crate) fn new(permits: usize) -> Self {
        assert!(
            permits <= Self::MAX_PERMITS,
            "a semaphore may not have more than MAX_PERMITS permits ({})",
            Self::MAX_PERMITS
        );
        Self {
            permits: AtomicUsize::new(permits << Self::PERMIT_SHIFT),
            waiters: Mutex::new(Waitlist {
                queue: LinkedList::new(),
                closed: false,
            }),
        }
    }

    /// Creates a new semaphore with the initial number of permits
    ///
    /// Maximum number of permits on 32-bit platforms is `1<<29`.
    ///
    /// If the specified number of permits exceeds the maximum permit amount
    /// Then the value will get clamped to the maximum number of permits.
    #[cfg(all(feature = "parking_lot", not(all(loom, test))))]
    pub(crate) const fn const_new(mut permits: usize) -> Self {
        // NOTE: assertions and by extension panics are still being worked on: https://github.com/rust-lang/rust/issues/74925
        // currently we just clamp the permit count when it exceeds the max
        permits &= Self::MAX_PERMITS;

        Self {
            permits: AtomicUsize::new(permits << Self::PERMIT_SHIFT),
            waiters: Mutex::const_new(Waitlist {
                queue: LinkedList::new(),
                closed: false,
            }),
        }
    }

    /// Returns the current number of available permits
    pub(crate) fn available_permits(&self) -> usize {
        self.permits.load(Acquire) >> Self::PERMIT_SHIFT
    }

    /// Adds `added` new permits to the semaphore.
    ///
    /// The maximum number of permits is `usize::MAX >> 3`, and this function will panic if the limit is exceeded.
    pub(crate) fn release(&self, added: usize) {
        if added == 0 {
            return;
        }

        // Assign permits to the wait queue
        self.add_permits_locked(added, self.waiters.lock());
    }

    /// Closes the semaphore. This prevents the semaphore from issuing new
    /// permits and notifies all pending waiters.
    pub(crate) fn close(&self) {
        let mut waiters = self.waiters.lock();
        // If the semaphore's permits counter has enough permits for an
        // unqueued waiter to acquire all the permits it needs immediately,
        // it won't touch the wait list. Therefore, we have to set a bit on
        // the permit counter as well. However, we must do this while
        // holding the lock --- otherwise, if we set the bit and then wait
        // to acquire the lock we'll enter an inconsistent state where the
        // permit counter is closed, but the wait list is not.
        self.permits.fetch_or(Self::CLOSED, Release);
        waiters.closed = true;
        while let Some(mut waiter) = waiters.queue.pop_back() {
            let waker = unsafe { waiter.as_mut().waker.with_mut(|waker| (*waker).take()) };
            if let Some(waker) = waker {
                waker.wake();
            }
        }
    }

    /// Returns true if the semaphore is closed
    pub(crate) fn is_closed(&self) -> bool {
        self.permits.load(Acquire) & Self::CLOSED == Self::CLOSED
    }

    pub(crate) fn try_acquire(&self, num_permits: u32) -> Result<(), TryAcquireError> {
        assert!(
            num_permits as usize <= Self::MAX_PERMITS,
            "a semaphore may not have more than MAX_PERMITS permits ({})",
            Self::MAX_PERMITS
        );
        let num_permits = (num_permits as usize) << Self::PERMIT_SHIFT;
        let mut curr = self.permits.load(Acquire);
        loop {
            // Has the semaphore closed?
            if curr & Self::CLOSED == Self::CLOSED {
                return Err(TryAcquireError::Closed);
            }

            // Are there enough permits remaining?
            if curr < num_permits {
                return Err(TryAcquireError::NoPermits);
            }

            let next = curr - num_permits;

            match self.permits.compare_exchange(curr, next, AcqRel, Acquire) {
                Ok(_) => return Ok(()),
                Err(actual) => curr = actual,
            }
        }
    }

    pub(crate) fn acquire(&self, num_permits: u32) -> Acquire<'_> {
        Acquire::new(self, num_permits)
    }

    /// Release `rem` permits to the semaphore's wait list, starting from the
    /// end of the queue.
    ///
    /// If `rem` exceeds the number of permits needed by the wait list, the
    /// remainder are assigned back to the semaphore.
    fn add_permits_locked(&self, mut rem: usize, waiters: MutexGuard<'_, Waitlist>) {
        let mut wakers: [Option<Waker>; 8] = Default::default();
        let mut lock = Some(waiters);
        let mut is_empty = false;
        while rem > 0 {
            let mut waiters = lock.take().unwrap_or_else(|| self.waiters.lock());
            'inner: for slot in &mut wakers[..] {
                // Was the waiter assigned enough permits to wake it?
                match waiters.queue.last() {
                    Some(waiter) => {
                        if !waiter.assign_permits(&mut rem) {
                            break 'inner;
                        }
                    }
                    None => {
                        is_empty = true;
                        // If we assigned permits to all the waiters in the queue, and there are
                        // still permits left over, assign them back to the semaphore.
                        break 'inner;
                    }
                };
                let mut waiter = waiters.queue.pop_back().unwrap();
                *slot = unsafe { waiter.as_mut().waker.with_mut(|waker| (*waker).take()) };
            }

            if rem > 0 && is_empty {
                let permits = rem;
                assert!(
                    permits <= Self::MAX_PERMITS,
                    "cannot add more than MAX_PERMITS permits ({})",
                    Self::MAX_PERMITS
                );
                let prev = self.permits.fetch_add(rem << Self::PERMIT_SHIFT, Release);
                assert!(
                    prev + permits <= Self::MAX_PERMITS,
                    "number of added permits ({}) would overflow MAX_PERMITS ({})",
                    rem,
                    Self::MAX_PERMITS
                );
                rem = 0;
            }

            drop(waiters); // release the lock

            wakers
                .iter_mut()
                .filter_map(Option::take)
                .for_each(Waker::wake);
        }

        assert_eq!(rem, 0);
    }

    fn poll_acquire(
        &self,
        cx: &mut Context<'_>,
        num_permits: u32,
        node: Pin<&mut Waiter>,
        queued: bool,
    ) -> Poll<Result<(), AcquireError>> {
        let mut acquired = 0;

        let needed = if queued {
            node.state.load(Acquire) << Self::PERMIT_SHIFT
        } else {
            (num_permits as usize) << Self::PERMIT_SHIFT
        };

        let mut lock = None;
        // First, try to take the requested number of permits from the
        // semaphore.
        let mut curr = self.permits.load(Acquire);
        let mut waiters = loop {
            // Has the semaphore closed?
            if curr & Self::CLOSED > 0 {
                return Ready(Err(AcquireError::closed()));
            }

            let mut remaining = 0;
            let total = curr
                .checked_add(acquired)
                .expect("number of permits must not overflow");
            let (next, acq) = if total >= needed {
                let next = curr - (needed - acquired);
                (next, needed >> Self::PERMIT_SHIFT)
            } else {
                remaining = (needed - acquired) - curr;
                (0, curr >> Self::PERMIT_SHIFT)
            };

            if remaining > 0 && lock.is_none() {
                // No permits were immediately available, so this permit will
                // (probably) need to wait. We'll need to acquire a lock on the
                // wait queue before continuing. We need to do this _before_ the
                // CAS that sets the new value of the semaphore's `permits`
                // counter. Otherwise, if we subtract the permits and then
                // acquire the lock, we might miss additional permits being
                // added while waiting for the lock.
                lock = Some(self.waiters.lock());
            }

            match self.permits.compare_exchange(curr, next, AcqRel, Acquire) {
                Ok(_) => {
                    acquired += acq;
                    if remaining == 0 {
                        if !queued {
                            return Ready(Ok(()));
                        } else if lock.is_none() {
                            break self.waiters.lock();
                        }
                    }
                    break lock.expect("lock must be acquired before waiting");
                }
                Err(actual) => curr = actual,
            }
        };

        if waiters.closed {
            return Ready(Err(AcquireError::closed()));
        }

        if node.assign_permits(&mut acquired) {
            self.add_permits_locked(acquired, waiters);
            return Ready(Ok(()));
        }

        assert_eq!(acquired, 0);

        // Otherwise, register the waker & enqueue the node.
        node.waker.with_mut(|waker| {
            // Safety: the wait list is locked, so we may modify the waker.
            let waker = unsafe { &mut *waker };
            // Do we need to register the new waker?
            if waker
                .as_ref()
                .map(|waker| !waker.will_wake(cx.waker()))
                .unwrap_or(true)
            {
                *waker = Some(cx.waker().clone());
            }
        });

        // If the waiter is not already in the wait queue, enqueue it.
        if !queued {
            let node = unsafe {
                let node = Pin::into_inner_unchecked(node) as *mut _;
                NonNull::new_unchecked(node)
            };

            waiters.queue.push_front(node);
        }

        Pending
    }
}

impl fmt::Debug for Semaphore {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Semaphore")
            .field("permits", &self.available_permits())
            .finish()
    }
}

impl Waiter {
    fn new(num_permits: u32) -> Self {
        Waiter {
            waker: UnsafeCell::new(None),
            state: AtomicUsize::new(num_permits as usize),
            pointers: linked_list::Pointers::new(),
            _p: PhantomPinned,
        }
    }

    /// Assign permits to the waiter.
    ///
    /// Returns `true` if the waiter should be removed from the queue
    fn assign_permits(&self, n: &mut usize) -> bool {
        let mut curr = self.state.load(Acquire);
        loop {
            let assign = cmp::min(curr, *n);
            let next = curr - assign;
            match self.state.compare_exchange(curr, next, AcqRel, Acquire) {
                Ok(_) => {
                    *n -= assign;
                    return next == 0;
                }
                Err(actual) => curr = actual,
            }
        }
    }
}

impl Future for Acquire<'_> {
    type Output = Result<(), AcquireError>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // First, ensure the current task has enough budget to proceed.
        let coop = ready!(crate::coop::poll_proceed(cx));

        let (node, semaphore, needed, queued) = self.project();

        match semaphore.poll_acquire(cx, needed, node, *queued) {
            Pending => {
                *queued = true;
                Pending
            }
            Ready(r) => {
                coop.made_progress();
                r?;
                *queued = false;
                Ready(Ok(()))
            }
        }
    }
}

impl<'a> Acquire<'a> {
    fn new(semaphore: &'a Semaphore, num_permits: u32) -> Self {
        Self {
            node: Waiter::new(num_permits),
            semaphore,
            num_permits,
            queued: false,
        }
    }

    fn project(self: Pin<&mut Self>) -> (Pin<&mut Waiter>, &Semaphore, u32, &mut bool) {
        fn is_unpin<T: Unpin>() {}
        unsafe {
            // Safety: all fields other than `node` are `Unpin`

            is_unpin::<&Semaphore>();
            is_unpin::<&mut bool>();
            is_unpin::<u32>();

            let this = self.get_unchecked_mut();
            (
                Pin::new_unchecked(&mut this.node),
                &this.semaphore,
                this.num_permits,
                &mut this.queued,
            )
        }
    }
}

impl Drop for Acquire<'_> {
    fn drop(&mut self) {
        // If the future is completed, there is no node in the wait list, so we
        // can skip acquiring the lock.
        if !self.queued {
            return;
        }

        // This is where we ensure safety. The future is being dropped,
        // which means we must ensure that the waiter entry is no longer stored
        // in the linked list.
        let mut waiters = self.semaphore.waiters.lock();

        // remove the entry from the list
        let node = NonNull::from(&mut self.node);
        // Safety: we have locked the wait list.
        unsafe { waiters.queue.remove(node) };

        let acquired_permits = self.num_permits as usize - self.node.state.load(Acquire);
        if acquired_permits > 0 {
            self.semaphore.add_permits_locked(acquired_permits, waiters);
        }
    }
}

// Safety: the `Acquire` future is not `Sync` automatically because it contains
// a `Waiter`, which, in turn, contains an `UnsafeCell`. However, the
// `UnsafeCell` is only accessed when the future is borrowed mutably (either in
// `poll` or in `drop`). Therefore, it is safe (although not particularly
// _useful_) for the future to be borrowed immutably across threads.
unsafe impl Sync for Acquire<'_> {}

// ===== impl AcquireError ====

impl AcquireError {
    fn closed() -> AcquireError {
        AcquireError(())
    }
}

impl fmt::Display for AcquireError {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "semaphore closed")
    }
}

impl std::error::Error for AcquireError {}

// ===== impl TryAcquireError =====

impl TryAcquireError {
    /// Returns `true` if the error was caused by a closed semaphore.
    #[allow(dead_code)] // may be used later!
    pub(crate) fn is_closed(&self) -> bool {
        matches!(self, TryAcquireError::Closed)
    }

    /// Returns `true` if the error was caused by calling `try_acquire` on a
    /// semaphore with no available permits.
    #[allow(dead_code)] // may be used later!
    pub(crate) fn is_no_permits(&self) -> bool {
        matches!(self, TryAcquireError::NoPermits)
    }
}

impl fmt::Display for TryAcquireError {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            TryAcquireError::Closed => write!(fmt, "semaphore closed"),
            TryAcquireError::NoPermits => write!(fmt, "no permits available"),
        }
    }
}

impl std::error::Error for TryAcquireError {}

/// # Safety
///
/// `Waiter` is forced to be !Unpin.
unsafe impl linked_list::Link for Waiter {
    // XXX: ideally, we would be able to use `Pin` here, to enforce the
    // invariant that list entries may not move while in the list. However, we
    // can't do this currently, as using `Pin<&'a mut Waiter>` as the `Handle`
    // type would require `Semaphore` to be generic over a lifetime. We can't
    // use `Pin<*mut Waiter>`, as raw pointers are `Unpin` regardless of whether
    // or not they dereference to an `!Unpin` target.
    type Handle = NonNull<Waiter>;
    type Target = Waiter;

    fn as_raw(handle: &Self::Handle) -> NonNull<Waiter> {
        *handle
    }

    unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
        ptr
    }

    unsafe fn pointers(mut target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
        NonNull::from(&mut target.as_mut().pointers)
    }
}