1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
use crate::runtime::task::core::{Cell, Core, CoreStage, Header, Scheduler, Trailer};
use crate::runtime::task::state::Snapshot;
use crate::runtime::task::waker::waker_ref;
use crate::runtime::task::{JoinError, Notified, Schedule, Task};

use std::future::Future;
use std::mem;
use std::panic;
use std::ptr::NonNull;
use std::task::{Context, Poll, Waker};

/// Typed raw task handle
pub(super) struct Harness<T: Future, S: 'static> {
    cell: NonNull<Cell<T, S>>,
}

impl<T, S> Harness<T, S>
where
    T: Future,
    S: 'static,
{
    pub(super) unsafe fn from_raw(ptr: NonNull<Header>) -> Harness<T, S> {
        Harness {
            cell: ptr.cast::<Cell<T, S>>(),
        }
    }

    fn header(&self) -> &Header {
        unsafe { &self.cell.as_ref().header }
    }

    fn trailer(&self) -> &Trailer {
        unsafe { &self.cell.as_ref().trailer }
    }

    fn core(&self) -> &Core<T, S> {
        unsafe { &self.cell.as_ref().core }
    }

    fn scheduler_view(&self) -> SchedulerView<'_, S> {
        SchedulerView {
            header: self.header(),
            scheduler: &self.core().scheduler,
        }
    }
}

impl<T, S> Harness<T, S>
where
    T: Future,
    S: Schedule,
{
    /// Polls the inner future.
    ///
    /// All necessary state checks and transitions are performed.
    ///
    /// Panics raised while polling the future are handled.
    pub(super) fn poll(self) {
        match self.poll_inner() {
            PollFuture::Notified => {
                // Signal yield
                self.core().scheduler.yield_now(Notified(self.to_task()));
                // The ref-count was incremented as part of
                // `transition_to_idle`.
                self.drop_reference();
            }
            PollFuture::DropReference => {
                self.drop_reference();
            }
            PollFuture::Complete(out, is_join_interested) => {
                self.complete(out, is_join_interested);
            }
            PollFuture::None => (),
        }
    }

    fn poll_inner(&self) -> PollFuture<T::Output> {
        let snapshot = match self.scheduler_view().transition_to_running() {
            TransitionToRunning::Ok(snapshot) => snapshot,
            TransitionToRunning::DropReference => return PollFuture::DropReference,
        };

        // The transition to `Running` done above ensures that a lock on the
        // future has been obtained. This also ensures the `*mut T` pointer
        // contains the future (as opposed to the output) and is initialized.

        let waker_ref = waker_ref::<T, S>(self.header());
        let cx = Context::from_waker(&*waker_ref);
        poll_future(self.header(), &self.core().stage, snapshot, cx)
    }

    pub(super) fn dealloc(self) {
        // Release the join waker, if there is one.
        self.trailer().waker.with_mut(drop);

        // Check causality
        self.core().stage.with_mut(drop);
        self.core().scheduler.with_mut(drop);

        unsafe {
            drop(Box::from_raw(self.cell.as_ptr()));
        }
    }

    // ===== join handle =====

    /// Read the task output into `dst`.
    pub(super) fn try_read_output(self, dst: &mut Poll<super::Result<T::Output>>, waker: &Waker) {
        if can_read_output(self.header(), self.trailer(), waker) {
            *dst = Poll::Ready(self.core().stage.take_output());
        }
    }

    pub(super) fn drop_join_handle_slow(self) {
        // Try to unset `JOIN_INTEREST`. This must be done as a first step in
        // case the task concurrently completed.
        if self.header().state.unset_join_interested().is_err() {
            // It is our responsibility to drop the output. This is critical as
            // the task output may not be `Send` and as such must remain with
            // the scheduler or `JoinHandle`. i.e. if the output remains in the
            // task structure until the task is deallocated, it may be dropped
            // by a Waker on any arbitrary thread.
            self.core().stage.drop_future_or_output();
        }

        // Drop the `JoinHandle` reference, possibly deallocating the task
        self.drop_reference();
    }

    // ===== waker behavior =====

    pub(super) fn wake_by_val(self) {
        self.wake_by_ref();
        self.drop_reference();
    }

    pub(super) fn wake_by_ref(&self) {
        if self.header().state.transition_to_notified() {
            self.core().scheduler.schedule(Notified(self.to_task()));
        }
    }

    pub(super) fn drop_reference(self) {
        if self.header().state.ref_dec() {
            self.dealloc();
        }
    }

    /// Forcibly shutdown the task
    ///
    /// Attempt to transition to `Running` in order to forcibly shutdown the
    /// task. If the task is currently running or in a state of completion, then
    /// there is nothing further to do. When the task completes running, it will
    /// notice the `CANCELLED` bit and finalize the task.
    pub(super) fn shutdown(self) {
        if !self.header().state.transition_to_shutdown() {
            // The task is concurrently running. No further work needed.
            return;
        }

        // By transitioning the lifcycle to `Running`, we have permission to
        // drop the future.
        let err = cancel_task(&self.core().stage);
        self.complete(Err(err), true)
    }

    // ====== internal ======

    fn complete(self, output: super::Result<T::Output>, is_join_interested: bool) {
        if is_join_interested {
            // Store the output. The future has already been dropped
            //
            // Safety: Mutual exclusion is obtained by having transitioned the task
            // state -> Running
            let stage = &self.core().stage;
            stage.store_output(output);

            // Transition to `Complete`, notifying the `JoinHandle` if necessary.
            transition_to_complete(self.header(), stage, &self.trailer());
        }

        // The task has completed execution and will no longer be scheduled.
        //
        // Attempts to batch a ref-dec with the state transition below.

        if self
            .scheduler_view()
            .transition_to_terminal(is_join_interested)
        {
            self.dealloc()
        }
    }

    fn to_task(&self) -> Task<S> {
        self.scheduler_view().to_task()
    }
}

enum TransitionToRunning {
    Ok(Snapshot),
    DropReference,
}

struct SchedulerView<'a, S> {
    header: &'a Header,
    scheduler: &'a Scheduler<S>,
}

impl<'a, S> SchedulerView<'a, S>
where
    S: Schedule,
{
    fn to_task(&self) -> Task<S> {
        // SAFETY The header is from the same struct containing the scheduler `S` so  the cast is safe
        unsafe { Task::from_raw(self.header.into()) }
    }

    /// Returns true if the task should be deallocated.
    fn transition_to_terminal(&self, is_join_interested: bool) -> bool {
        let ref_dec = if self.scheduler.is_bound() {
            if let Some(task) = self.scheduler.release(self.to_task()) {
                mem::forget(task);
                true
            } else {
                false
            }
        } else {
            false
        };

        // This might deallocate
        let snapshot = self
            .header
            .state
            .transition_to_terminal(!is_join_interested, ref_dec);

        snapshot.ref_count() == 0
    }

    fn transition_to_running(&self) -> TransitionToRunning {
        // If this is the first time the task is polled, the task will be bound
        // to the scheduler, in which case the task ref count must be
        // incremented.
        let is_not_bound = !self.scheduler.is_bound();

        // Transition the task to the running state.
        //
        // A failure to transition here indicates the task has been cancelled
        // while in the run queue pending execution.
        let snapshot = match self.header.state.transition_to_running(is_not_bound) {
            Ok(snapshot) => snapshot,
            Err(_) => {
                // The task was shutdown while in the run queue. At this point,
                // we just hold a ref counted reference. Since we do not have access to it here
                // return `DropReference` so the caller drops it.
                return TransitionToRunning::DropReference;
            }
        };

        if is_not_bound {
            // Ensure the task is bound to a scheduler instance. Since this is
            // the first time polling the task, a scheduler instance is pulled
            // from the local context and assigned to the task.
            //
            // The scheduler maintains ownership of the task and responds to
            // `wake` calls.
            //
            // The task reference count has been incremented.
            //
            // Safety: Since we have unique access to the task so that we can
            // safely call `bind_scheduler`.
            self.scheduler.bind_scheduler(self.to_task());
        }
        TransitionToRunning::Ok(snapshot)
    }
}

/// Transitions the task's lifecycle to `Complete`. Notifies the
/// `JoinHandle` if it still has interest in the completion.
fn transition_to_complete<T>(header: &Header, stage: &CoreStage<T>, trailer: &Trailer)
where
    T: Future,
{
    // Transition the task's lifecycle to `Complete` and get a snapshot of
    // the task's sate.
    let snapshot = header.state.transition_to_complete();

    if !snapshot.is_join_interested() {
        // The `JoinHandle` is not interested in the output of this task. It
        // is our responsibility to drop the output.
        stage.drop_future_or_output();
    } else if snapshot.has_join_waker() {
        // Notify the join handle. The previous transition obtains the
        // lock on the waker cell.
        trailer.wake_join();
    }
}

fn can_read_output(header: &Header, trailer: &Trailer, waker: &Waker) -> bool {
    // Load a snapshot of the current task state
    let snapshot = header.state.load();

    debug_assert!(snapshot.is_join_interested());

    if !snapshot.is_complete() {
        // The waker must be stored in the task struct.
        let res = if snapshot.has_join_waker() {
            // There already is a waker stored in the struct. If it matches
            // the provided waker, then there is no further work to do.
            // Otherwise, the waker must be swapped.
            let will_wake = unsafe {
                // Safety: when `JOIN_INTEREST` is set, only `JOIN_HANDLE`
                // may mutate the `waker` field.
                trailer.will_wake(waker)
            };

            if will_wake {
                // The task is not complete **and** the waker is up to date,
                // there is nothing further that needs to be done.
                return false;
            }

            // Unset the `JOIN_WAKER` to gain mutable access to the `waker`
            // field then update the field with the new join worker.
            //
            // This requires two atomic operations, unsetting the bit and
            // then resetting it. If the task transitions to complete
            // concurrently to either one of those operations, then setting
            // the join waker fails and we proceed to reading the task
            // output.
            header
                .state
                .unset_waker()
                .and_then(|snapshot| set_join_waker(header, trailer, waker.clone(), snapshot))
        } else {
            set_join_waker(header, trailer, waker.clone(), snapshot)
        };

        match res {
            Ok(_) => return false,
            Err(snapshot) => {
                assert!(snapshot.is_complete());
            }
        }
    }
    true
}

fn set_join_waker(
    header: &Header,
    trailer: &Trailer,
    waker: Waker,
    snapshot: Snapshot,
) -> Result<Snapshot, Snapshot> {
    assert!(snapshot.is_join_interested());
    assert!(!snapshot.has_join_waker());

    // Safety: Only the `JoinHandle` may set the `waker` field. When
    // `JOIN_INTEREST` is **not** set, nothing else will touch the field.
    unsafe {
        trailer.set_waker(Some(waker));
    }

    // Update the `JoinWaker` state accordingly
    let res = header.state.set_join_waker();

    // If the state could not be updated, then clear the join waker
    if res.is_err() {
        unsafe {
            trailer.set_waker(None);
        }
    }

    res
}

enum PollFuture<T> {
    Complete(Result<T, JoinError>, bool),
    DropReference,
    Notified,
    None,
}

fn cancel_task<T: Future>(stage: &CoreStage<T>) -> JoinError {
    // Drop the future from a panic guard.
    let res = panic::catch_unwind(panic::AssertUnwindSafe(|| {
        stage.drop_future_or_output();
    }));

    if let Err(err) = res {
        // Dropping the future panicked, complete the join
        // handle with the panic to avoid dropping the panic
        // on the ground.
        JoinError::panic(err)
    } else {
        JoinError::cancelled()
    }
}

fn poll_future<T: Future>(
    header: &Header,
    core: &CoreStage<T>,
    snapshot: Snapshot,
    cx: Context<'_>,
) -> PollFuture<T::Output> {
    if snapshot.is_cancelled() {
        PollFuture::Complete(Err(JoinError::cancelled()), snapshot.is_join_interested())
    } else {
        let res = panic::catch_unwind(panic::AssertUnwindSafe(|| {
            struct Guard<'a, T: Future> {
                core: &'a CoreStage<T>,
            }

            impl<T: Future> Drop for Guard<'_, T> {
                fn drop(&mut self) {
                    self.core.drop_future_or_output();
                }
            }

            let guard = Guard { core };

            let res = guard.core.poll(cx);

            // prevent the guard from dropping the future
            mem::forget(guard);

            res
        }));
        match res {
            Ok(Poll::Pending) => match header.state.transition_to_idle() {
                Ok(snapshot) => {
                    if snapshot.is_notified() {
                        PollFuture::Notified
                    } else {
                        PollFuture::None
                    }
                }
                Err(_) => PollFuture::Complete(Err(cancel_task(core)), true),
            },
            Ok(Poll::Ready(ok)) => PollFuture::Complete(Ok(ok), snapshot.is_join_interested()),
            Err(err) => {
                PollFuture::Complete(Err(JoinError::panic(err)), snapshot.is_join_interested())
            }
        }
    }
}