1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
use crate::runtime::blocking::task::BlockingTask; use crate::runtime::task::{self, JoinHandle}; use crate::runtime::{blocking, context, driver, Spawner}; use crate::util::error::CONTEXT_MISSING_ERROR; use std::future::Future; use std::{error, fmt}; /// Handle to the runtime. /// /// The handle is internally reference-counted and can be freely cloned. A handle can be /// obtained using the [`Runtime::handle`] method. /// /// [`Runtime::handle`]: crate::runtime::Runtime::handle() #[derive(Debug, Clone)] pub struct Handle { pub(super) spawner: Spawner, /// Handles to the I/O drivers pub(super) io_handle: driver::IoHandle, /// Handles to the signal drivers pub(super) signal_handle: driver::SignalHandle, /// Handles to the time drivers pub(super) time_handle: driver::TimeHandle, /// Source of `Instant::now()` pub(super) clock: driver::Clock, /// Blocking pool spawner pub(super) blocking_spawner: blocking::Spawner, } /// Runtime context guard. /// /// Returned by [`Runtime::enter`] and [`Handle::enter`], the context guard exits /// the runtime context on drop. /// /// [`Runtime::enter`]: fn@crate::runtime::Runtime::enter #[derive(Debug)] #[must_use = "Creating and dropping a guard does nothing"] pub struct EnterGuard<'a> { handle: &'a Handle, guard: context::EnterGuard, } impl Handle { /// Enter the runtime context. This allows you to construct types that must /// have an executor available on creation such as [`Sleep`] or [`TcpStream`]. /// It will also allow you to call methods such as [`tokio::spawn`]. /// /// [`Sleep`]: struct@crate::time::Sleep /// [`TcpStream`]: struct@crate::net::TcpStream /// [`tokio::spawn`]: fn@crate::spawn pub fn enter(&self) -> EnterGuard<'_> { EnterGuard { handle: self, guard: context::enter(self.clone()), } } /// Returns a `Handle` view over the currently running `Runtime` /// /// # Panic /// /// This will panic if called outside the context of a Tokio runtime. That means that you must /// call this on one of the threads **being run by the runtime**. Calling this from within a /// thread created by `std::thread::spawn` (for example) will cause a panic. /// /// # Examples /// /// This can be used to obtain the handle of the surrounding runtime from an async /// block or function running on that runtime. /// /// ``` /// # use std::thread; /// # use tokio::runtime::Runtime; /// # fn dox() { /// # let rt = Runtime::new().unwrap(); /// # rt.spawn(async { /// use tokio::runtime::Handle; /// /// // Inside an async block or function. /// let handle = Handle::current(); /// handle.spawn(async { /// println!("now running in the existing Runtime"); /// }); /// /// # let handle = /// thread::spawn(move || { /// // Notice that the handle is created outside of this thread and then moved in /// handle.spawn(async { /* ... */ }) /// // This next line would cause a panic /// // let handle2 = Handle::current(); /// }); /// # handle.join().unwrap(); /// # }); /// # } /// ``` pub fn current() -> Self { context::current().expect(CONTEXT_MISSING_ERROR) } /// Returns a Handle view over the currently running Runtime /// /// Returns an error if no Runtime has been started /// /// Contrary to `current`, this never panics pub fn try_current() -> Result<Self, TryCurrentError> { context::current().ok_or(TryCurrentError(())) } /// Spawn a future onto the Tokio runtime. /// /// This spawns the given future onto the runtime's executor, usually a /// thread pool. The thread pool is then responsible for polling the future /// until it completes. /// /// See [module level][mod] documentation for more details. /// /// [mod]: index.html /// /// # Examples /// /// ``` /// use tokio::runtime::Runtime; /// /// # fn dox() { /// // Create the runtime /// let rt = Runtime::new().unwrap(); /// // Get a handle from this runtime /// let handle = rt.handle(); /// /// // Spawn a future onto the runtime using the handle /// handle.spawn(async { /// println!("now running on a worker thread"); /// }); /// # } /// ``` #[cfg_attr(tokio_track_caller, track_caller)] pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output> where F: Future + Send + 'static, F::Output: Send + 'static, { #[cfg(all(tokio_unstable, feature = "tracing"))] let future = crate::util::trace::task(future, "task"); self.spawner.spawn(future) } /// Run the provided function on an executor dedicated to blocking /// operations. /// /// # Examples /// /// ``` /// use tokio::runtime::Runtime; /// /// # fn dox() { /// // Create the runtime /// let rt = Runtime::new().unwrap(); /// // Get a handle from this runtime /// let handle = rt.handle(); /// /// // Spawn a blocking function onto the runtime using the handle /// handle.spawn_blocking(|| { /// println!("now running on a worker thread"); /// }); /// # } #[cfg_attr(tokio_track_caller, track_caller)] pub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R> where F: FnOnce() -> R + Send + 'static, R: Send + 'static, { #[cfg(all(tokio_unstable, feature = "tracing"))] let func = { #[cfg(tokio_track_caller)] let location = std::panic::Location::caller(); #[cfg(tokio_track_caller)] let span = tracing::trace_span!( target: "tokio::task", "task", kind = %"blocking", function = %std::any::type_name::<F>(), spawn.location = %format_args!("{}:{}:{}", location.file(), location.line(), location.column()), ); #[cfg(not(tokio_track_caller))] let span = tracing::trace_span!( target: "tokio::task", "task", kind = %"blocking", function = %std::any::type_name::<F>(), ); move || { let _g = span.enter(); func() } }; let (task, handle) = task::joinable(BlockingTask::new(func)); let _ = self.blocking_spawner.spawn(task, &self); handle } /// Run a future to completion on this `Handle`'s associated `Runtime`. /// /// This runs the given future on the runtime, blocking until it is /// complete, and yielding its resolved result. Any tasks or timers which /// the future spawns internally will be executed on the runtime. /// /// When this is used on a `current_thread` runtime, only the /// [`Runtime::block_on`] method can drive the IO and timer drivers, but the /// `Handle::block_on` method cannot drive them. This means that, when using /// this method on a current_thread runtime, anything that relies on IO or /// timers will not work unless there is another thread currently calling /// [`Runtime::block_on`] on the same runtime. /// /// # If the runtime has been shut down /// /// If the `Handle`'s associated `Runtime` has been shut down (through /// [`Runtime::shutdown_background`], [`Runtime::shutdown_timeout`], or by /// dropping it) and `Handle::block_on` is used it might return an error or /// panic. Specifically IO resources will return an error and timers will /// panic. Runtime independent futures will run as normal. /// /// # Panics /// /// This function panics if the provided future panics, if called within an /// asynchronous execution context, or if a timer future is executed on a /// runtime that has been shut down. /// /// # Examples /// /// ``` /// use tokio::runtime::Runtime; /// /// // Create the runtime /// let rt = Runtime::new().unwrap(); /// /// // Get a handle from this runtime /// let handle = rt.handle(); /// /// // Execute the future, blocking the current thread until completion /// handle.block_on(async { /// println!("hello"); /// }); /// ``` /// /// Or using `Handle::current`: /// /// ``` /// use tokio::runtime::Handle; /// /// #[tokio::main] /// async fn main () { /// let handle = Handle::current(); /// std::thread::spawn(move || { /// // Using Handle::block_on to run async code in the new thread. /// handle.block_on(async { /// println!("hello"); /// }); /// }); /// } /// ``` /// /// [`JoinError`]: struct@crate::task::JoinError /// [`JoinHandle`]: struct@crate::task::JoinHandle /// [`Runtime::block_on`]: fn@crate::runtime::Runtime::block_on /// [`Runtime::shutdown_background`]: fn@crate::runtime::Runtime::shutdown_background /// [`Runtime::shutdown_timeout`]: fn@crate::runtime::Runtime::shutdown_timeout /// [`spawn_blocking`]: crate::task::spawn_blocking /// [`tokio::fs`]: crate::fs /// [`tokio::net`]: crate::net /// [`tokio::time`]: crate::time pub fn block_on<F: Future>(&self, future: F) -> F::Output { // Enter the **runtime** context. This configures spawning, the current I/O driver, ... let _rt_enter = self.enter(); // Enter a **blocking** context. This prevents blocking from a runtime. let mut blocking_enter = crate::runtime::enter(true); // Block on the future blocking_enter .block_on(future) .expect("failed to park thread") } pub(crate) fn shutdown(mut self) { self.spawner.shutdown(); } } /// Error returned by `try_current` when no Runtime has been started pub struct TryCurrentError(()); impl fmt::Debug for TryCurrentError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("TryCurrentError").finish() } } impl fmt::Display for TryCurrentError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(CONTEXT_MISSING_ERROR) } } impl error::Error for TryCurrentError {}