1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#![cfg_attr(not(feature = "full"), allow(dead_code))]

//! Yield points for improved cooperative scheduling.
//!
//! Documentation for this can be found in the [`tokio::task`] module.
//!
//! [`tokio::task`]: crate::task.

// ```ignore
// # use tokio_stream::{Stream, StreamExt};
// async fn drop_all<I: Stream + Unpin>(mut input: I) {
//     while let Some(_) = input.next().await {
//         tokio::coop::proceed().await;
//     }
// }
// ```
//
// The `proceed` future will coordinate with the executor to make sure that
// every so often control is yielded back to the executor so it can run other
// tasks.
//
// # Placing yield points
//
// Voluntary yield points should be placed _after_ at least some work has been
// done. If they are not, a future sufficiently deep in the task hierarchy may
// end up _never_ getting to run because of the number of yield points that
// inevitably appear before it is reached. In general, you will want yield
// points to only appear in "leaf" futures -- those that do not themselves poll
// other futures. By doing this, you avoid double-counting each iteration of
// the outer future against the cooperating budget.

use std::cell::Cell;

thread_local! {
    static CURRENT: Cell<Budget> = Cell::new(Budget::unconstrained());
}

/// Opaque type tracking the amount of "work" a task may still do before
/// yielding back to the scheduler.
#[derive(Debug, Copy, Clone)]
pub(crate) struct Budget(Option<u8>);

impl Budget {
    /// Budget assigned to a task on each poll.
    ///
    /// The value itself is chosen somewhat arbitrarily. It needs to be high
    /// enough to amortize wakeup and scheduling costs, but low enough that we
    /// do not starve other tasks for too long. The value also needs to be high
    /// enough that particularly deep tasks are able to do at least some useful
    /// work at all.
    ///
    /// Note that as more yield points are added in the ecosystem, this value
    /// will probably also have to be raised.
    const fn initial() -> Budget {
        Budget(Some(128))
    }

    /// Returns an unconstrained budget. Operations will not be limited.
    const fn unconstrained() -> Budget {
        Budget(None)
    }
}

cfg_rt_multi_thread! {
    impl Budget {
        fn has_remaining(self) -> bool {
            self.0.map(|budget| budget > 0).unwrap_or(true)
        }
    }
}

/// Run the given closure with a cooperative task budget. When the function
/// returns, the budget is reset to the value prior to calling the function.
#[inline(always)]
pub(crate) fn budget<R>(f: impl FnOnce() -> R) -> R {
    with_budget(Budget::initial(), f)
}

/// Run the given closure with an unconstrained task budget. When the function returns, the budget
/// is reset to the value prior to calling the function.
#[inline(always)]
pub(crate) fn with_unconstrained<R>(f: impl FnOnce() -> R) -> R {
    with_budget(Budget::unconstrained(), f)
}

#[inline(always)]
fn with_budget<R>(budget: Budget, f: impl FnOnce() -> R) -> R {
    struct ResetGuard<'a> {
        cell: &'a Cell<Budget>,
        prev: Budget,
    }

    impl<'a> Drop for ResetGuard<'a> {
        fn drop(&mut self) {
            self.cell.set(self.prev);
        }
    }

    CURRENT.with(move |cell| {
        let prev = cell.get();

        cell.set(budget);

        let _guard = ResetGuard { cell, prev };

        f()
    })
}

cfg_rt_multi_thread! {
    /// Set the current task's budget
    pub(crate) fn set(budget: Budget) {
        CURRENT.with(|cell| cell.set(budget))
    }

    #[inline(always)]
    pub(crate) fn has_budget_remaining() -> bool {
        CURRENT.with(|cell| cell.get().has_remaining())
    }
}

cfg_rt! {
    /// Forcibly remove the budgeting constraints early.
    ///
    /// Returns the remaining budget
    pub(crate) fn stop() -> Budget {
        CURRENT.with(|cell| {
            let prev = cell.get();
            cell.set(Budget::unconstrained());
            prev
        })
    }
}

cfg_coop! {
    use std::task::{Context, Poll};

    #[must_use]
    pub(crate) struct RestoreOnPending(Cell<Budget>);

    impl RestoreOnPending {
        pub(crate) fn made_progress(&self) {
            self.0.set(Budget::unconstrained());
        }
    }

    impl Drop for RestoreOnPending {
        fn drop(&mut self) {
            // Don't reset if budget was unconstrained or if we made progress.
            // They are both represented as the remembered budget being unconstrained.
            let budget = self.0.get();
            if !budget.is_unconstrained() {
                CURRENT.with(|cell| {
                    cell.set(budget);
                });
            }
        }
    }

    /// Returns `Poll::Pending` if the current task has exceeded its budget and should yield.
    ///
    /// When you call this method, the current budget is decremented. However, to ensure that
    /// progress is made every time a task is polled, the budget is automatically restored to its
    /// former value if the returned `RestoreOnPending` is dropped. It is the caller's
    /// responsibility to call `RestoreOnPending::made_progress` if it made progress, to ensure
    /// that the budget empties appropriately.
    ///
    /// Note that `RestoreOnPending` restores the budget **as it was before `poll_proceed`**.
    /// Therefore, if the budget is _further_ adjusted between when `poll_proceed` returns and
    /// `RestRestoreOnPending` is dropped, those adjustments are erased unless the caller indicates
    /// that progress was made.
    #[inline]
    pub(crate) fn poll_proceed(cx: &mut Context<'_>) -> Poll<RestoreOnPending> {
        CURRENT.with(|cell| {
            let mut budget = cell.get();

            if budget.decrement() {
                let restore = RestoreOnPending(Cell::new(cell.get()));
                cell.set(budget);
                Poll::Ready(restore)
            } else {
                cx.waker().wake_by_ref();
                Poll::Pending
            }
        })
    }

    impl Budget {
        /// Decrement the budget. Returns `true` if successful. Decrementing fails
        /// when there is not enough remaining budget.
        fn decrement(&mut self) -> bool {
            if let Some(num) = &mut self.0 {
                if *num > 0 {
                    *num -= 1;
                    true
                } else {
                    false
                }
            } else {
                true
            }
        }

        fn is_unconstrained(self) -> bool {
            self.0.is_none()
        }
    }
}

#[cfg(all(test, not(loom)))]
mod test {
    use super::*;

    fn get() -> Budget {
        CURRENT.with(|cell| cell.get())
    }

    #[test]
    fn bugeting() {
        use futures::future::poll_fn;
        use tokio_test::*;

        assert!(get().0.is_none());

        let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));

        assert!(get().0.is_none());
        drop(coop);
        assert!(get().0.is_none());

        budget(|| {
            assert_eq!(get().0, Budget::initial().0);

            let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
            assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
            drop(coop);
            // we didn't make progress
            assert_eq!(get().0, Budget::initial().0);

            let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
            assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
            coop.made_progress();
            drop(coop);
            // we _did_ make progress
            assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);

            let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
            assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 2);
            coop.made_progress();
            drop(coop);
            assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 2);

            budget(|| {
                assert_eq!(get().0, Budget::initial().0);

                let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
                assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
                coop.made_progress();
                drop(coop);
                assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
            });

            assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 2);
        });

        assert!(get().0.is_none());

        budget(|| {
            let n = get().0.unwrap();

            for _ in 0..n {
                let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
                coop.made_progress();
            }

            let mut task = task::spawn(poll_fn(|cx| {
                let coop = ready!(poll_proceed(cx));
                coop.made_progress();
                Poll::Ready(())
            }));

            assert_pending!(task.poll());
        });
    }
}